

岡崎敦男(北海学園大学)

Talk Outline

- 1. Gamma-ray binaries
 - Probing the nature of the compact object and physics of high-energy emission
- 2. High mass X-ray binaries vs. gamma-ray binaries
 - Is there any evolutionary link between these groups?
 - Where are other types of massive binaries?

1. Gamma-ray binaries

(TeV) gamma-ray sources

(TeV) gamma-ray binaries

- Binaries with SED dominated by gamma-ray emission
- Only 7 systems, all of which consist of an OB star and a compact object
 - **4 Be-star systems** (P_{orb}=30d-50yr, e=0.5-1)
 - > 3 main-sequence O-star systems

(P_{orb}=4-20d, e=0.1-0.4)

 Nature of compact object established only for two systems to be non-accreting pulsars

Be stars

Non-supergiant early-type stars whose spectra have shown one or more Balmer lines in emission (Collins 1987)

(Rivinius+ 2013)

Two competing scenarios for other systems

Pulsar wind scenario

Collision shocks between pulsar wind and stellar wind (and/or Be disk)

Microquasar scenario

Accretion of stellar wind and/or Be-disk gas Relativistic jet

Acceleration of electrons
IC gamma-rays

The biggest challenge

Clarifying the nature of the compact object and physics of interaction leading to highenergy emission

Standard approach

Observed SED and multi-wavelength LCs

Analytical model or sims of interaction + Emission model

LS 5039 (O6V + compact object; P_{orb}=3.9 d, e=0.35)

Another approach

If there is a clear feature that is characteristic to the PW or MQ scenario, it will enable us to distinguish between these scenarios.

Be-star systems have such a feature!

Both of two systems, where the nature of compact object is known, have a Be star:

- PSR B1259-63
 - > O9.5Ve + 49 ms pulsar
 - Porb=3.4 yr, e=0.87
- PSR J2032+4127
 - B1Ve + 143 ms pulsar
 - ▷ P_{orb}=48 yr, e=0.978

PSR B1259-63 (O9.5Ve + 49 ms pulsar; P_{orb}=3.4 yr, e=0.87)

PSR J2032+4127 (B1Ve + 143 ms pulsar; P_{orb} =48 yr, e=0.978)

X-ray dip when pulsar is in Be-disk shadow

Take a look at the other Be systems with compact object with unknown nature

HESS J0632+057 (P_{orb}=315 d, e=0.83)

<u>LS I+61 303 (P_{orb}=26.5 d, e=0.54 or 0.72)</u>

15

Observed X-ray flux varies much more smoothly than for PW model

16

MQ?

2. High mass X-ray binaries vs. gamma-ray binaries

Comparison between HMXBs and gamma-ray binaries

	HMXB	GB
Number of systems	>100	7
X-ray	Strong (thermal)	Weak (non- thermal)
Gamma- ray	No detection	Strong
Optical companion	Be stars, OB supergiants	Be stars, ms O stars

Evolutionary link between HMXBs and gamma-ray binaries?

Conventional idea based on PW scenario

Spin down of pulsar

very young systems with Gamma-ray binaries rapidly rotating pulsars Magnetar GB? (No) supergiant GBs? **Transitional** populations? Systems with flip-flopping pulsars? **HMXBs** Slowly rotating, accreting pulsars