

Development of the Soft Gamma-ray Detector on board ASTRO-H ASTRO-H 衛星搭載軟ガンマ線検出器の開発(2012年度後半)

Mar 27, 2013 Hiroshima, JPS meeting

T. Mizuno, H. Tajima^A, Y. Fukazawa, S. Watanabe^{B,C}, H. Uchiyama^C, Y. Uchiyama^D, T. Enoto^E, M. Ohta^B, M. Ohno, H. Odaka^B, J. Kataoka^F, M. Kawaharada^B, M. Kokubun^B, G. Sato^B, R. Sato^B, T. Takahashi^{B,C}, H. Takahashi, S. Takeda^B, S. Tashiro^G, T. Tanaka^H, Y. Terada^G, K. Nakazawa^C, K. Nakamori^F, R. Brandford^D, K. Makishima^C, G. Madejski^D, K. Mori^B, Y. Yatsu^I, S. Yamada^E, T. Yuasa^B, D. Yonetoku^J, P. Laurent^K, O. Limousin^K, F. Lebrun^K and the SGD team

広島大学,名大STE研^A, ISAS/JAXA^B,東大理^C, KIPAC/Stanford^D,理研^E,早大理工^F,埼大理^G,京大理^H,東工 大理^I,金沢大自^J, CEA-DSM-IRFU^K 1

ASTRO-H & SGD

Objectives of ASTRO-H (#3)

• The most sensitive wideband observation over an energy range from 0.3 to 600 keV

Soft Gamma-ray Detector(SGD)

- Highly-sensitive observation in 60-600 keV
 - narrow-FOV Compton Camera
 - extremely-low background

- Si-CdTe Compton Camera + BGO shiled
- Constrain incident angle using Compton kinematics
 - efficient background suppression
 - extra success: soft gamma-ray polarimetry

Two SGDs on Astro-H

- Compton Camera
- BGO Active Shield
 - 10 deg FOV
 - 25 modules
 - read-out by APD
- Fine Collimator
 - 0.5 deg FOV (E<=150 keV)
 - reduce CXB/source confusion
- Housing
- Cooling System
 - keep CC/APD at -15~-20 °C
 - heat pipe, radiator
- •SGD-AE

SGD-S

4

Development in the second half of this fiscal year

(updates since 2012 Sep. JPS meeting, 14aSP-9)

- SGD-S
 - (done as of 2012 Sep.) vibration test (issue found), thermal balance test
 - radiator support structure improvement, acoustic test, vibration test (scheduled on 2013 Mar.)
- Compton Camera
 - (done as of 2012 Sep.) test of partial EM
 - construction of full-EM, electric test, thermal-vacuum test, vibration test (scheduled on 2013 Mar.)
- BGO, APD
 - new method of gluing APD and BGO developed and tested
 - verification of signal processing firmware
- Fine Collimator
 - acceptance test preparation
- Other
 - internal release of the MDP (sensitivity of pol. measurement) calculation tool

Development in the second half of this fiscal year

(updates since 2012 Sep. JPS meeting, 14aSP-9)

• SGD-S

Ohta+, 27pBE-11

- (done as of 2012 Sep.) vibration test (issue found), thermal balance test

radiator support structure improvement, acoustic test, vibration test (scheduled on 2013 Mar.)

- Compton Camera
 - (done as of 2012 Sep.) test of partial EM

construction of full-EM, electric test, thermal-vacuum test, vibration test (scheduled on 2013 Mar.)

- BGO, APD
 - new method of gluing APD and BGO developed and tested
 - verification of signal processing firmware Tokuda+, 27pBE-6
- Fine Collimator
 - acceptance test preparation | Kimura+, 27pBE-9
- Other

internal release of the MDP (sensitivity of pol. measurement) calculation tool

(Ohta, Watanabe, Nakazawa, Noda, Ichinohe, MHI)

- Vibration test
 - issue found in radiator support
 - improvement of the structure verified by an analysis. test
 scheduled on Mar. (see next)
 Ohta+, 27pBE-11
- Thermal-balance test: confirmation of thermal design
- Acoustic test: no apparent damage. effects on FC evaluated

Kimura+, 27pBE-9

Radiator Support Structure

(Nakazawa, Ohta, Minesugi, Ishimura, MHI)

- Issue found during SGD-S EM vibration test
 - radiator structure had a high Q-value(>100) and low frequency (18, 34... Hz)
 - deformation of the radiator plate
 - risk of hitting against the satellite side panel
- Improved radiator support structure
 - rigidity increase of radiator and back-structure. cut the panel edge
 - addition of Ti-support plate between radiator and interface plate
 - strengthen housing bottom structure
- Results by and analysis (@Q=50)
 - higher resonance freq. (18 Hz->40 Hz, 34 Hz->59 Hz)
 - displacement: 24 mm < 64 mm (allowance)</p>
- V-test scheduled on Mar. to confirm the design

Full EM Compton Camera Electric Test

(Ichinohe, Takeda, Watanabe, Togo)

- Configuration of full EM Compton Camera
 - sensor module is the same as FM in terms of design and material
 - FPGA, some PCBs and passive parts are not space qualified
- Fully functional except for one out of 8 side-CdTe modules
 - fraction of bad channels (noisy, disconnected)
 - Si: ~0.03%, CdTe: ~2%
 - no degradation of energy resolution
- Verification of imaging capability with Compton kinematics

(Watanabe, Takeda, Nakamura, Furui)

- Thermal vacuum test in 2012 Dec. 14-28
 - verification of thermal design and energy resolution in vacuum
 - continuous operation for several days

(Ichinohe, Takeda, Watanabe, Togo)

- Verification of internal background level
 - place Compton Camera inside passive shield (Pb+Cu)
 - no prominent radio isotope found

- SGD is a highly-sensitive spectrometer and polarimeter
- Internally release of a flexible tool to calculate MDP for userdefined spectrum and energy range (available in ASTRO-H Science Page)

(Enoto and SGD team)

SGD MDP Calculatio	n Tool - ASTRO-H Science Team - Ma	zilla Firefox			
ファイル(E) 編集(E) 表示 SGD MDP Calculation To	② 履歴(3) ブックマーク(8) ツール(1) ヘルブ ▲I - ASTRO-H S +	(ID)			
🗲 🔒 https://galaxy.ast	o.isas. jaza.jp /wikis/astroh-sci/index.php/SGD_MD	P_Dalculation_Tool	☆ ⊽	C 😽 Yahoo! JAPAN	<i>p</i>
yaO! • ¥! • 2 •	入力して秋素 💌 椎索 🔸 🎦 ロジイン	🕐 🕡 • 🚺 第85回アカデミ	ミー賞 🧕 北斗の学・	・ 🔯 映像トピックス ・ 🏂 地獄	を指定・ 🖉 ・ 🦧
<u>^</u>					👃 Login
R-BRY ORSERVETORY	Page Discussion SGD MDP Calculation	Read	Edit View histor	y	30 Search
Main page Recent changes	Main Page Performance and tools SGD MDP Calculation Tool	for White Pape	r)		[edit]
 Shortcuts SM1 SM2 	evalPolarizationRDP script and resources (v0.3) File:V0.3.mp				
SM3 SM4 SM5 SM6	This python-based code gives the Minimum Detectable Polarization (MDP) of ASTRO-H SGD together with a source count rate, total count, weighted mu, when users interactively input an incident source spectrum, an energy range, and its exposure. Currently, the operation was verified only on Mac OS X.				
SM7	Note. This code is a simplified tool dedicated to the white paper task force.				
SM9 SM9 White Paper	The incident source spectrum will be specified via XSPEC model file, i.e., xcm file. When you create the xcm model file, just save the model				
Members (STF) Summer Schools	mbers(STF) mmerSchools xspec> save model modelfile.xcm				

T. Mizuno et al.

- SGD-S
 - vibration test, thermal balance test and acoustic test performed
 - issues on radiator structure being resolved and verified
- Compton Camera
 - 1st full EM constructed
 - electric and thermal vacuum test performed
 - internal background measured w/ passive shield
- Preparation of each component
 - FC, BGO, APD (method of gluing developed and tested)
- Internal release of MDP evaluation tool

Thank you for your Attention

Backup Slides

- I-V breakdown of APDs
 - likely to be caused by cure induced shrinkage of DC-93-500 elastic adhesive (negative pressure)
- Gluing of BGO and APD
 - separation of glue at low temperature
 - caused by shrinkage of DC-93-500 at low temperature

(Nakazawa, Sasano, Yatsu, Saito, Sato, Nakamori, Kataoka)

- DC-93-500 => KE-101 (smaller cure induced shrinkage)
- New structures for releasing the negative stress
 - prototype passed
 - adhesive tests, vibration tests (QT+3dB), shock tests (QT), thermal cycle tests (-35~-40 °C), low-temperature vacuum tests (-35°C), electrical tests of APD (no breakdown)

FM Fabrication, Test and Delivery Schedule

