

pace Telescope

2017-03 JPS MbmPegasus.ppt

Study of the ISM and CRs in the MBM 53-55 Clouds and the Pegasus Loop

Mar. 18th, 2017@JPS meeting in Osaka

T. Mizuno (Hiroshima Univ.) on behalf of the Fermi-LAT Collaboration

(Mizuno+16, ApJ 833, 278)

ace Telescope

フェルミ衛星によるMBM 53-55分子雲・Pegasus Loop領域における<u>星間</u> ガスと宇宙線の研究 Mar. 18th, 2017@大阪大学(日本物 理学会)

水野恒史 (広島大学) on behalf of the Fermi-LAT Collaboration

(Mizuno+16, ApJ 833, 278)

Deconvolved γ -ray image of W44 w/ Spitzer 4.5 μ m contours (tracer of shocked H₂)

γ-ray spectrum shows a low-energy cutoff (signature of pi⁰-decay)

An accurate estimate of the interstellar medium (ISM) densities is crucial to study Galactic cosmic rays (CRs), since $I_{\gamma} \propto N(H_{tot})U_{CR}$

Gamma-ray Space Telescope Uncertainty of ISM: Dark Gas

• Fermi revealed a component of <u>ISM not measurable by standard</u> <u>tracers</u> (HI 21 cm, CO 2.6 mm), confirming an earlier claim by EGRET (Grenier+05)

Garmaray Space Telescope Uncertainty of ISM: Dark Gas

- Fermi revealed a component of ISM not measurable by standard tracers (HI 21 cm, CO 2.6 mm), confirming an earlier claim by EGRET (Grenier+05)
- Mass of "dark gas" is <u>comparable</u> to or greater than that of H₂ traced by W_{co}

Molecular cloud	H ₂ mass traced by W _{CO} (M _{solar})	"dark gas" (M _{solar})	M _{DG} /M _{H2,CO}
Chamaeleon	~5x10 ³	~2.0x10 ⁴	~4
R CrA	~10 ³	~10 ³	~1
Cepheus & Polaris	~3.3x10 ⁴	~1.3x10 ⁴	~0.4
Orion A	~5.5x10 ⁴	~2.8x10 ⁴	~0.5

Ackermann+12, ApJ 755, 22 (CA: Hayashi, TM); Ackermann+12, ApJ 756, 4 (CA: Okumura, Kamae) See also Planck Collaboration 2015, A&A 582, 31 (CA: Grenier) 5/11

- Study of ISM and CRs in high-latitude clouds using Fermi-LAT data has advanced significantly
 - We can assume that CR flux is uniform
 - We now have Planck dust thermal emission model which is useful to trace total gas column density (N(H_{tot})) in detail
 - (Procedure to convert dust distribution into N(H_{tot}) has not been established yet)
- Here we will present <u>the study of MBM53-55 and Pegasus Loop</u> region and implications for the ISM and CRs using Fermi-LAT

- Dust is mixed with gas and has been used as a tracer of N(H_{tot})
 - But what kind of quantity should we use?
- We examined correlations btw. W_{HI} and two dust tracers (radiance (R) and opacity at 353 GHz (τ₃₅₃)) (see also Fukui+14,15, Planck Collab. 2014)
 - Two tracers show different, dust-temperature (T_d) dependent correlations with $W_{\rm HI}$

(Areas with W_{co}>1.1 K km/s are masked)

- Dust is mixed with gas and has been used as a tracer of N(H_{tot})
 - But what kind of quantity should we use?
- We examined correlations btw. W_{HI} and two dust tracers (radiance (R) and opacity at 353 GHz (τ₃₅₃)) (see also Fukui+14,15, Planck Collab. 2014)
 - Two tracers show different and T_d-dependent correlations with W_{HI}
 - We tested two tracers against γ -ray data. We also examined T_d dependence and found that N(H_{tot, γ})/R (or τ_{353}) depends on T_d. (likely artificial)
 - => use γ -ray data to compensate for the dependence $(I_{\gamma} \propto N(H_{tot})U_{CR})$

 We started with R-based N(H_{tot}) map and applied a correction on N(H_{tot}) by using an empirical function as below (modeling the increase of N(H_{tot}) in areas with low Td)

$$N(\mathbf{H}_{\rm tot,mod}) = \begin{cases} N(\mathbf{H}_{\rm tot,R}) \ (T_{\rm d} > T_{\rm bk}) \ ,\\ (1 + 0.05 \cdot C \cdot \frac{T_{\rm bk} - T_{\rm d}}{1 \ \mathrm{K}}) \cdot N(\mathbf{H}_{\rm tot,R}) \ (T_{\rm d} \le T_{\rm bk}) \ , \end{cases} (\mathbf{T}_{\rm bk} = 20.5 \ \mathrm{K})$$

- Then we scanned coefficient C which best represents γ-ray data
 - Idea is to use γ -ray data as a robust tracer of N(H_{tot}) ($I_{\gamma} \propto N(H_{tot}) U_{CR}$)
- T_{bk}=20.5 K and C=2 (<u>10% required increase in N(H_{tot}) by 1K</u>) provides highest fit likelihood. It gives <u>M_{DG}/M_{H2,C0} <= 5</u>.

- HI emissivity spectrum is compared with model curves based on the local interstellar spectrum (LIS) and results by relevant LAT studies employing a conventional template-fitting method
- Our spectrum agrees with the model for LIS with ε_m (nuclear enhancement factor)=1.45, while previous LAT studies favor ε_m =1.84

Systematic study of other highlatitude regions is necessary to better understand the ISM and CRs u

- <u>An accurate estimate of ISM densities is crucial to</u> study CRs
- Diffuse GeV γ rays are a powerful probe to study the ISM and CRs
- We present a joint Planck & Fermi-LAT study of MBM 53-55 clouds and the Pegasus Loop for the first time
 - We propose to use γ rays as a robust tracer of N(H_{tot}), and obtained the ISM (and CR) properties
 - We obtained physical quantities on ISM and CRs (e.g., mass of dark gas, HI emissivity)
 - Systematic study of other high-latitude regions is necessary to better understand the ISM and CRs

Thank you for your Attention

References (Fermi-LAT Studies of Diffuse Emission in MW)

- Abdo+09, ApJ 703, 1249 (CA: TM)
- Abdo+09, PRL 103, 251101 (CA: Johanneson, Porter, Strong)
- Abdo+10, ApJ 710, 133 (CA: Grenier, Tibaldo)
- Abdo+10, PRL 104, 101101 (CA: Ackermann, Porter, Sellerholm)
- Ackermann+11, ApJ 726, 81 (CA: Grenier, TM, Tibaldo)
- Ackermann+12, ApJ 750, 3 (CA: Johanneson, Porter, Strong)
- Ackermann+12, ApJ 755, 22 (CA: Hayashi, TM)
- Ackermann+12, ApJ 756, 4 (CA: Kamae, Okumura)
- Ackermann+12, A&A 538, 71 (CA: Grenier, Tibaldo)
- Ackermann+14, ApJ 793, 64 (CA: Franckowiak, Malyshev, Petrosian)
- Casandjian 2015, ApJ 806, 240
- Ackermann+15, ApJ 799, 86 (CA: Ackermann, Bechtol)
- Tibaldo+15, ApJ 807, 161 (CA: Digel, Tibaldo)
- Planck Collaboration 2015, A&A 582, 31 (CA: Grenier)
- Ajello+16, ApJ 819, 44 (CA: Porter, Murgia)
- Acero+16, ApJS 223, 26 (CA: Casandjian, Grenier)
- Mizuno+16, ApJ 833, 278
- Remy+17, A&A accepted (CA: Grenier, Remy)

- Atwood+09, ApJ 697, 1071
- Dame+01, ApJ 547, 792
- Fukui+14, ApJ 796, 59
- Fukui+15, ApJ 798, 6
- Grenier+05, Science 307, 1292
- Kalberla+05, A&A 440, 775
- Kiss+04, A&A 418, 131
- Planck Collaboration XI 2014, A&A 571, 11
- Strong & Moskalenko 98, ApJ 509, 212
- Welty+89, ApJ 346, 232
- Yamamoto+03, ApJ 592, 217
- Yamamoto+06, ApJ 642, 307
- Ysard+15, A&A 577, 110

Backup Slides

- Interstellar Medium (ISM) plays an important role in physical processes in the Milky Way
- <u>Diffuse GeV γ rays</u> are a powerful probe to study the ISM gas [tracer of the total gas column density, N(H_{tot})]

- Planck submillimeter map (30-857 GHz)
- = Dust thermal emission = ISM gas in the Milky Way (MW)

T. Mizuno et al. Nearby molecular clouds at high latitude

• Diffuse GeV γ-rays ~ Cosmic Rays (CRs) x ISM

γ rays = CRs x ISM gas (or ISRF)

A powerful probe to study <u>ISM</u> and CRs (γ rays directly trace gas in all phases)

γ rays = CRs x ISM gas (or ISRF)

 γ -ray data and model (mid-lat. region) Abdo+09, PRL 103, 251101 (CA: Porter, Johanneson, Strong) We can distinguish gas-related γ rays from z_{H}^{γ} others based on the spectrum (right plot) and morphology (see the following slides)

a powerful probe to study ISM and CRs

Pro: optically-thin, "direct" tracer of all gas phases Con: low-statistics, contamination (isotropic, IC), depend on CR density => need to be complemented with other gas tracers T. Mizuno et al. Gamma-ray Space Telescope Origin and Propagation of Galactic CRs

- u_{CR}~1 eV/cm³ at the solar system
- V_{gal} =10⁶⁷⁻⁶⁸ cm³, τ_{esc} ~10⁷ yr

 $P_{CR} \sim 10^{41} \text{ erg/s}$

- $E_{SN} \sim 10^{51} \text{ erg}, F_{SN} \sim 1/30 \text{ yr}$
- If η~0.1

 $P_{inj} \sim 10^{41} \text{ erg/s}$

To test this SNR paradigm of CRs, we need to observe

- CRs accelerated at SNRs and starforming regions
- CR distribution in Milky Way (MW)

GeV γ ray as a tracer of CRs and ISM

- For local CR, the γ-ray emissivity is Q_γ(>100MeV) ~ 1.6x10⁻²⁶ ph/s/sr/H-atom ~ 1.5x10⁻²⁸ erg/s/H-atom
- Then, the γ -ray luminosity is L_{γ}(>100MeV)~(M_{gas}/m_p)*Q_{γ} ~10³⁹ erg/s

(compatible to Galactic Ridge X-ray Emission) **MW is bright in** γ rays

A probe to study CR origin & propagation, ISM distribution

- Scale height ~70 pc. Site of star formation
- Usually traced by CO lines in radio
 - not an "all-sky" map, uncertainty of X_{co}=N(H₂)/W_{co}

- Scale height ~200 pc. Main component of ISM
- Usually traced by 21 cm line
 - uncertainty due to the assumption of the spin temperature (Ts)

- Scale height ~200 pc. Main component of ISM
- Usually traced by 21 cm line
 - uncertainty due to the assumption of the spin temperature (Ts)

T. Mizuno et al.

Galactic

plane

- Usually ISM gas has been traced by radio surveys (HI by 21 cm, H₂ by 2.6 mm CO)
- Grenier+05 claimed considerable amount of <u>"dark gas"</u> surrounding nearby CO clouds
 - Cold HI or CO-dark H₂? M_{DG}?
 - It can be inferred from the distribution of dust, but what kind of dust property should we use?

• Under the assumption of a uniform CR density in the region studied, diffuse γ rays can be modeled by a linear combination of template maps $\propto I_{CR} \qquad \propto (I_{CR} \times X_{CO})$

26/11

- W_{CO} is not an all-sky map, may miss some fraction of H_2
- It is not clear what kind of dust property we should use to trace dark gas

- Launch in 2008, nearly uniform survey of the γ -ray sky
- Performance of Fermi-LAT was improved significantly with Pass8
 - large effective area (~1 m²) and field-of-view (>=2 sr)

- Launch in 2008, nearly uniform survey of γ -ray sky
- Performance of Fermi-LAT was improved significantly with Pass8
 - large effective area (~1 m²) and field-of-view (~2 sr)

- Usually H₂ gas is traced by CO 2.6 mm line observations. A canonical value of $X_{CO} (\equiv N(H_2)/W_{CO})$ is $\sim 2 \times 10^{20} \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$
- γ rays are a useful probe to study X_{co}
 - CRs penetrate to the core of H₂ clouds
 - CR density can be estimated from nearby HI clouds
 - $X_{CO,\gamma}$ does not depend on assumptions on the dynamical state of the gas
- Even in nearby clouds/local arm, <u>uncertainty is by a factor of ~2</u>

- "local" CR densities among regions agree by a factor of 1.5, within systematic uncertainty
- Uncertainties are shown by inserts and are mostly due to the assumption of T_s

- Nearby, high-latitude clouds <u>suitable to study the ISM</u> and cosmic rays (CRs) in the solar neighborhood (Welty+89, Kiss+04, Yamamoto+03,06)
 - d ~ 150 and 100 pc for MBM 53-55 and Pegasus Loop, respectively
 - Most of HI in the region is local (from HI velocities in appendix)

Planck dust temperature (T_d) map

Planck radiance (R) map converted in N(H_{tot}) template map

Gamma-ray Space Telescope Initial Modeling with a Single N(H_{tot}) Map

- We assumed N(H_{tot}) \propto R (or τ_{353}) and constructed N(H_{tot}) maps
 - Coefficients were determined by assuming that HI is optically thin and well represents N(H_{tot}) in T_d>21.5 K (dotted lines in slide #15)
- We used 7 years P8R2 data and modeled γ -ray intensity as below
 - q_{γ} is the emissivity model adopted. Subscript i is for separating N(H_{tot}). Single map is used in initial analysis
 - $I_{\gamma}(l,b,E) = \sum c_{1,i}(E) \cdot q_{\gamma}(E) \cdot N(\mathbf{H}_{\text{tot}})_i(l,b) + c_2(E) \cdot I_{\text{IC}}(l,b,E) + I_{\text{iso}}(E) + \sum \mathrm{PS}_j(l,b,E)$
 - We found R-based N(H_{tot}) better represents γ -ray data in terms of InL

- Even though R-based N(H_{tot}) is preferred by γ-ray data, true N(H_{tot}) could be appreciably different
- Therefore we split N(H_{tot}) template map into four based on T_d and fit γ-ray data with scaling factors freely varying individually
 - Scaling factors should not depend on T_d if $N(H_{tot}) \propto D$ (R or τ_{353})
- Fit improves significantly and shows clear T_d dependence of scaling factors
 - The trend is robust against various tests of systematic uncertainty

We propose to use γ -ray data to compensate for the dependence

- We found, from γ -ray data analysis, neither the radiance nor τ_{353} are good tracers of N(H_{tot})
 - Even though the interstellar radiation field (ISRF) is uniform in the vicinity of the solar system, <u>the radiance (per H) could</u> <u>decrease as the gas (and dust) density increases</u>, because the ISRF is more strongly absorbed by dust. This will cause a correlated decrease in the T_d and the radiance (per H).

Ysard+15, Fig.2 (Radiance per H vs. T_d for several choices of ISRF hardness. <u>Both radiance and T_d decrease as the ISRF is abosrbed</u>)

Possible Explanation of T_d Dependence (2)

- We found, from γ -ray data analysis, neither the radiance nor τ_{353} are good tracers of N(H_{tot})
 - In the optically-thin limit, $I_v = \tau_v B_v(T_d) = \sigma_v N(H_{tot}) B_v(T_d)$, where τ_v and σ_v are the optical depth and the dust opacity (cross section) per H, respectively. σ_v depends on the frequency and is often describes as a power law, giving $I_v = \tau_{v0} (v/v_0)^{\beta} B_v(T_d)$ (modified blackbody, β ~1.5-2).
 - Therefore, <u>IF the dust cross section is uniform</u>, $\tau_v \propto N(H_{tot})$ and we can measure the total gas column density by measuring the dust optical depth at any frequency (e.g., τ_{353}).
 - However, <u>dust opacity is not</u> <u>uniform</u> but rather anticorrelates with T_d as reported by Planck Collaboration (2014).

 We started with R-based N(H_{tot}) map and employed an empirical function as below [modeling the increase of N(H_{tot}) in areas with low Td]

$$N(\mathbf{H}_{\rm tot,mod}) = \begin{cases} N(\mathbf{H}_{\rm tot,R}) \ (T_{\rm d} > T_{\rm bk}) \ , \\ (1 + 0.05 \cdot C \cdot \frac{T_{\rm bk} - T_{\rm d}}{1 \ \rm K}) \cdot N(\mathbf{H}_{\rm tot,R}) \ (T_{\rm d} \le T_{\rm bk}) \ , \end{cases}$$

 T_{bk}=20.5 K and C=2 [10% required increase in N(H_{tot}) by 1K] gives highest fit likelihood, and obtained N(H_{tot,mod}) and the spectrum are shown below

 Obtained data count map (left) and model count map (right) in E > 300 MeV

- The correlation between W_{HI} and the "corrected" N(H_{tot}) map
 - Scatter due to dark gas (DG)

- The correlation between W_{HI} and the "corrected" N(H_{tot}) map
 - Scatter due to dark gas (DG). T_s<100 K is inferred in the scenario that optically thick HI dominates

4

- Integral of gas column density (∝ M_{gas}) as a function of T_d for N(H_{tot}), N(HI_{thin}), N(H_{tot})-N(HI_{thin})(~N(H) for dark gas) and 2N(H_{2,CO})
 - M_{DG} is ~25% of $M_{HI,thin}$ and ~ 5 x $M_{H2,CO}$ (the factor of 5 is large compared to those in other regions)
 - M_{DG} differs by a factor of ~4 if we use only R (or τ_{353}); <u>The correction</u> <u>based on γ-ray data is crucial</u> M(DG,γ) = ~ 4 x M(DG, R)

Results by a Conventional Template-Fitting Method

- We also employed a conventional template-fitting method
 - Fit gamma-ray data with N(HI_{thin}) map, W_{CO} map, R_{res} map (template of dark gas) with isotropic, Inverse Compton and point sources
 - M_{DG} (shown by red dotted histogram) is ~50% smaller than that we obtained through T_d-corrected modeling

- N(HI_{thin}) in 10²⁰ cm⁻²
- W_{co} in K km/s
- T_d in K

- We are studying high-latitude region, therefore most of gas is in local. Still, there are some clouds with different velocities [intermediate velocity clouds (IVCs)]
- (Left) W_{HI} of local clouds. (Right) W_{HI} of IVCs
 - Contribution of IVCs is at the ~5% level

