

Study of the Cosmic-rays and the Interstellar Medium in Local HI Clouds using Fermi-LAT Gamma-ray Observations

Mar. 22, 2018@JPS meeting in Chiba Tsunefumi Mizuno

(Hiroshima Univ.)

On behalf of the Fermi-LAT collaboration

rav

Space Telescope

フェルミ衛星による太陽 系近傍原子雲の宇宙線・ 星間ガスの研究

2018年3月22日@日本物理学会 (東京理科大学)

水野 恒史(広島大学)ほか Fermi-LAT Collaboration

γ-ray imagew/ 4.5 µm contours

W44 2-10 GeV 58:00.0 18:56:00.0 54:00 Abdo+10 (CA: Tajima, Tanaka, Uchiyama) 200 1000 1200 1400 1600 1800 400 600 800 [counts/deg2]

low-energy cutoff = signature of pi⁰-decay

Accurate estimate of the interstellar medium (ISM) densities is crucial to study Galactic cosmic rays (CRs), since $I_{\gamma} \propto N(H_{tot})U_{CR}$

- Main component of ISM, scale height ~ 200 pc
- Traced by 21 cm line

-1.6

- N(HI) is uncertain due to the assumption of the spin temperature (T_s)

- Main component of ISM, scale height ~ 200 pc
- Traced by 21 cm line
 - Conversion from the observed T_b to N(HI) is uncertain due to the assumption of the spin temperature (T_s)

- Accurate estimate of the ISM gas densities is crucial to understand the ISM and Galactic CRs
- Procedure to trace the "dark gas" [gas not properly traced by HI and CO line surveys (Grenier+05)] not established yet => detailed study of nearby clouds

 Uniform CR density (valid in high latitude regions)
=> the γ-ray intensity can be modeled as a <u>linear</u> combination of templates

+ ...

Fermi Data

210

$$q_{\rm HI}(E)$$
 tells us CR density/spectrum

$$\begin{split} N(\mathbf{H}_{\text{tot}}) &= \Sigma_i \ a_i \cdot N(\mathbf{H}_i) \\ (\text{e. g.}, N(\mathbf{H}_{\text{I}}) + 2X_{\text{CO}} \cdot W_{\text{CO}} + X_{\text{DG}}N(\mathbf{H}_{\text{DG}})) \\ & \text{Fit quality tells us which tracer is better} \end{split}$$

Coefficients (a_i) tell us gas properties

- Correlation btw. W_{HI} and dust emission D_{em} (τ_{353} or R)
- Dust temperature (T_d) dependence is seen in W_{HI} - τ_{353} correlation
- Linear curves that follow trends in high T_d area are used to construct N(H_{tot}) model maps assuming N(H_{tot}) $\propto \tau_{353}$ (or R)

T_d-sorted N(H_{tot}) Model Maps (<u>North</u>)

• R-based, T_d-sorted N(H_{tot}) model maps

9/13

- Uniform CR density => Emissivity (I_γ/N(H_{tot})) should not depend on T_d
- Fit of γ -ray data with T_d-sorted maps gives a positive T_d dependence for τ_{353} , implying smaller N(H_{tot})/ τ_{353} ratio in low T_d area (Mizuno+16)

- Correlation between W_{HI} and D_{em} (τ_{353} or R)
- Weak T_d dependence, non-linear W_{HI}-D_{em} relations (N(H_{tot})/D_{em} and/or N(H_{tot})/N(HI) not uniform)
- Linear curves that follow trends in (high T_d & low W_{HI}) area are used to construct N(H_{tot}) model maps assuming N(H_{tot}) ∝ τ₃₅₃ (or R)

- Investigate possible non-linear N(H_{tot})-D_{em} relations through a fit with τ₃₅₃(or R)-sorted N(H_{tot}) maps
- Negative τ_{353} dependence is seen, implying smaller N(H_{tot})/ τ_{353} ratio in high density area

- We have been studying CRs and ISM in mid-latitude region of the 3rd quadrant
- Fit γ -ray data with T_d-sorted N(H_{tot}) maps in North
 - Positive T_d dependence of emissivity for τ_{353} , implying smaller N(H_{tot})/ τ_{353} ratio in high T_d area
- Fit γ -ray data with τ_{353} -sorted N(H_{tot}) maps in South
 - Negative τ_{353} dependence, implying smaller N(H_{tot})/ τ_{353} ratio in high density area
- We will examine systematic uncertainties (background, IC model, etc.) and discuss CR/ISM properties quantitatively

Thank you for your Attention

- Abdo+09, ApJ 703, 1249
- Abdo+10, Science 327, 1103
- Ackermann+13, Science 339, 807
- Grenier+05, Science 307, 1292
- Karberla+05, A&A 440, 775
- HI4PI Collaboration 2016, A&A 594, 116
- Mizuno+16, ApJ 833, 278
- Mori09, Astropart. Phys. 31, 341
- Planck Collaboration 2014, A&A 571, 13 (Planck 2013 Results XIII)

Backup Slides

γ rays = CRs x ISM gas (or ISRF)

• CR proton density is expected to be uniform in a few 100s pc scale, making GeV γ -rays a powerful probe of the ISM ($I_{\gamma} \propto N(H_{tot})U_{CR}$)

- 8 years data, P8R2_CLEAN_V6, zmax=100 deg
- We fit γ-ray data with N(H_{tot}) model map [based on HI4PI data or Planck τ₃₅₃ or Planck radiance (R)]+ isotropic + inverse Compton (IC) + ionized gas model map + Sun/Moon template + point sources in 0.1-25.6 GeV (logarithmically-sliced 8 bins)
 - IC model of GALPROP run 54_Yusifov_z4kpc_R30kpc_Ts150K_EBV2mag
 - 3FGL sources detected at >= 6σ in ROI and bright 3FGL sources in peripheral area
 - WMAP Free-free emission map for H⁺ template (wmap_K_mem_freefree_9yr_v5.fits)
 - Template of Sun/Moon of 6 years observation (template_SunMoon_6years_zmax100.fits used for Catalog study)
- All components were taken as free parameters in each band
 - Local HI emissivity template spectrum for N(H_{tot}) and ionized gas components. PL with free index for isotropic. Γ =2.2 for point sources.
 - Normalization of Sun/Moon template was fixed to 1 in South region
- North and South regions were fitted individually.

- We studied local ISM and CRs in mid-lat. region of the 3rd quadrant (Abdo+09)
- We revisit the region using recent γ-ray (Fermi-LAT), HI (HI4PI) and dust (Planck) data to examine:
 - T_d dependence of dust-emission to gas ratio (Mizuno+16)
 - Non-linear dust-emission to gas ratio (Roy+13, Planck Collaboration 2015)

 We prepared N(H_{tot}) model maps (∝ τ₃₅₃ or R) and used them in a fit of γ-ray data

