

Study of the Cosmic Rays and Interstellar Medium in Local HI Clouds using Fermi-LAT Gamma-Ray Observations

Sep. 17, 2018@JPS meeting in Nagano Tsunefumi Mizuno (Hiroshima Univ.)

On behalf of the Fermi-LAT collaboration



rav

Space Telescope

## フェルミ衛星による太陽 系近傍原子雲の宇宙線・ 星間ガスの研究(2)

### 2018年9月17日@日本物理学会 (信州大学)

水野 恒史(広島大学)ほか Fermi-LAT Collaboration



# γ-ray imagew/ 4.5 µm contours

#### W44 2-10 GeV 58:00.0 18:56:00.0 54:00 Abdo+10 (CA: Tajima, Tanaka, Uchiyama) 200 1000 1200 1400 1600 1800 400 600 800 [counts/deg2]

# low-energy cutoff = signature of pi<sup>0</sup>-decay



### <u>Accurate estimate of the interstellar medium</u> (ISM) gas densities is crucial to study Galactic cosmic rays (CRs), because $I_{\gamma} \propto N_{\rm H} U_{\rm CR}$



- Main component of ISM, scale height ~ 200 pc
- Traced by 21 cm line (W<sub>HI</sub>)
  - True N<sub>HI</sub> is uncertain due to the uncertainty of the spin temperature (T<sub>s</sub>)





- Accurate estimate of the ISM gas densities is crucial to understand the ISM and Galactic CRs
- Procedure to trace the "dark gas" (gas not properly traced by HI and CO line surveys (Grenier+05)) not established yet => detailed study of nearby clouds





Uniform CR density (assumption testable by energy dependence) -> the γ-ray intensity can be modeled as a linear combination of templates



Coefficients  $(a_i)$  tell us gas properties

We employ "P305" data to reduce residual background toward Ecliptic/Equator while keeping high photon statistics (public data w/ stringent cut also OK)



- Correlation btw.  $W_{HI}$  and dust emission  $D_{em}$  (R or  $\tau_{353}$ )
- Dust temperature (T<sub>d</sub>) dependence is seen in  $W_{HI}$ - $\tau_{353}$  correlation
- Linear curves that follow trends in high T<sub>d</sub> area are used to construct N<sub>H</sub> model maps assuming N<sub>H</sub>∝D<sub>em</sub>





 We prepared N<sub>H</sub> model maps (∝ W<sub>HI</sub> or D<sub>em</sub>) and used them in a fit of γ-ray data -> R gives the best fit.





- Correlation between  $W_{HI}$  and  $D_{em}$  (R or  $\tau_{353}$ )
- Weak T<sub>d</sub> dependence, non-linear W<sub>HI</sub>-D<sub>em</sub> relations (N<sub>H</sub>/D<sub>em</sub> and/or N<sub>H</sub>/N<sub>HI</sub> not uniform)
- Linear curves that follow trends in (high  $T_d \& Iow W_{HI}$ ) area are used to construct  $N_H$  model maps assuming  $N_H \propto D_{em}$





 We prepared N<sub>H</sub> model maps (∝ W<sub>HI</sub> or D<sub>em</sub>) and used them in a fit of γ-ray data -> R gives the best fit.



10/11

Summary & Future Prospect

- We have been studying CRs and ISM in mid-latitude region of the 3<sup>rd</sup> quadrant.
  - Establish the procedure to convert  $\rm D_{em}$  to  $\rm N_{\rm H},$  constrain CRs and ISM gas properties
  - Employ P305 data to suppress residual background
- ISM gas tracer investigation (W<sub>HI</sub>-D<sub>em</sub> relationship):
  - T<sub>d</sub> dependence in North, D<sub>em</sub> dependence in South
- *γ*-ray data analysis:
  - R gives best fit (North and South)
- Now evaluating T<sub>d</sub>/D<sub>em</sub> dependence with systematic uncertainties into account to discuss CR/ISM properties Thank you for your Attention



- Abdo+09, ApJ 703, 1249
- Abdo+10, Science 327, 1103
- Ackermann+13, Science 339, 807
- Grenier+05, Science 307, 1292
- Karberla+05, A&A 440, 775
- HI4PI Collaboration 2016, A&A 594, 116
- Mizuno+16, ApJ 833, 278
- Mori09, Astropart. Phys. 31, 341
- Planck Collaboration 2014, A&A 571, 13 (Planck 2013 Results XIII)