

HI 21cm線プロファイル・ダスト放射・ガンマ線を用いた, MBM 53-55分子雲・Pegasus loop領域における星間ガスと宇宙線の研究

水野 恒史 (広島大学) 林 克洋, J. Metzger, I. V. Moskalenko, E. Orlando, A. W. Strong, 山本 宏昭

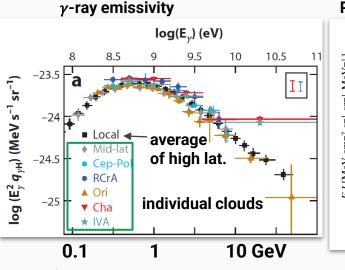
日本物理学会 第77回年次大会 2022 Mar. 15

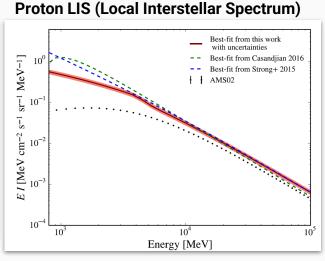
Cosmic-Ray and Gas Properties in the MBM 53-55 Clouds and the Pegasus Loop as Revealed by HI Line Profiles, Dust, and Gamma-Ray Data

T. Mizuno (Hiroshima Univ.)

K. Hayashi, J. Metzger, I. V. Moskalenko,

E. Orlando, A. W. Strong, H. Yamamoto


JPS meeting, 2022 Mar. 15


Motivation: Gas & CRs

I_{CR} (αΙ_γ/N_H)
Goal: Accurately measure gas and cosmic rays (<u>CRs</u>) in Milky Way

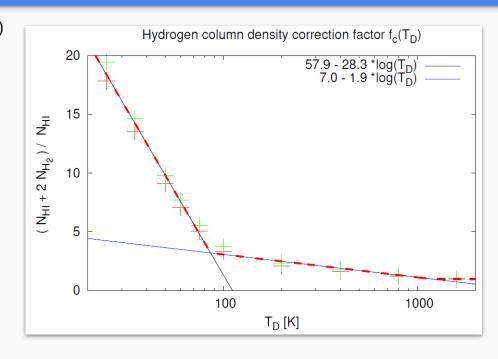
Issue: Uncertainty is still large (factor of \sim 1.5) even in local environment

Key: <u>Identify optically thin HI</u> $(N_{HI} \propto W_{HI})$

 γ -ray emissivity (\propto I_{CR}) of local clouds (Grenier, Black & Strong 2015) scatter due to uncertainty of optical depth correction

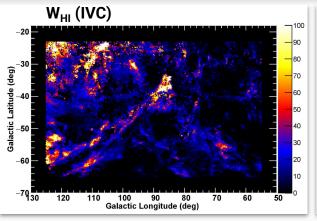
Local γ -ray emissivity is known to be ~30% larger than expected by CR measurements (Strong 2015, Orlando 2018)

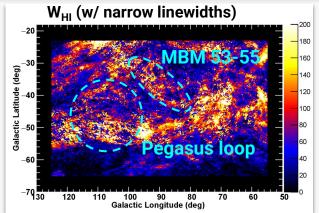
T. Mizuno

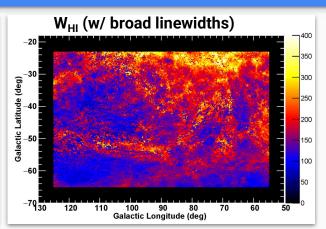

2022.03.15

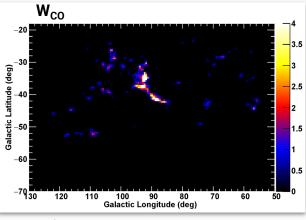
3/10

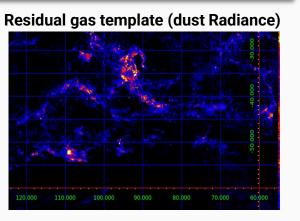
Possible Solution: Using HI-line Profiles


(see also Heiless & Troland 03)
Kalberla+20 found narrow-line HI gas
is associated with dark gas [gas not
properly traced by HI and CO lines] and
broad-line HI gas with optically thin HI

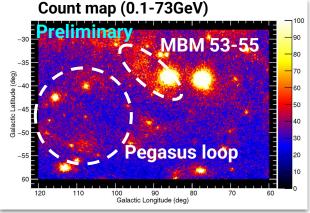

- T_D (Doppler temperature)= $22*\delta v^2$
- Vertical axis shows ratio of N_H^{tot} to N_{HI}^{thin} (estimated using dust emission)
- Areas of ratio>1 (dark-gas rich) are with narrow HI line

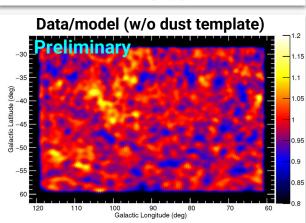



To (validate the work and) estimate CR & ISM gas accurately, we employed HI-line-profile based analysis to MBM 53-55 clouds and Pegasus loop (Mizuno+16)


ISM Gas Maps: HI, CO, dust (residual)

3W_{HI} and W_{CO} maps (K km/s)

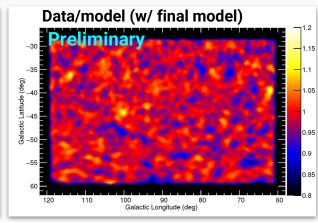

- intermediate velocity cloud
- narrow HI (T_D <1000K)
- broad HI (T_D>1000K)
- W_{CO} (to trace CO-bright H₂)
- (+IC, iso, src)


Residual gas found and modeled using dust Radiance

T. Mizuno

2022.03.15

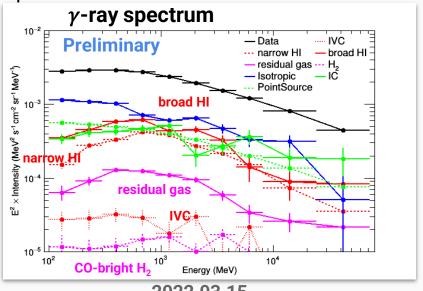
Model and Analysis (Cntd.)



Residual gas found (btm. left) and modeled using dust Radiance

We succeeded in reproducing data with $3W_{HI}(IVC, narrow\ HI, broad\ HI)+W_{CO}+D_{res}+Iso+IC+sources$

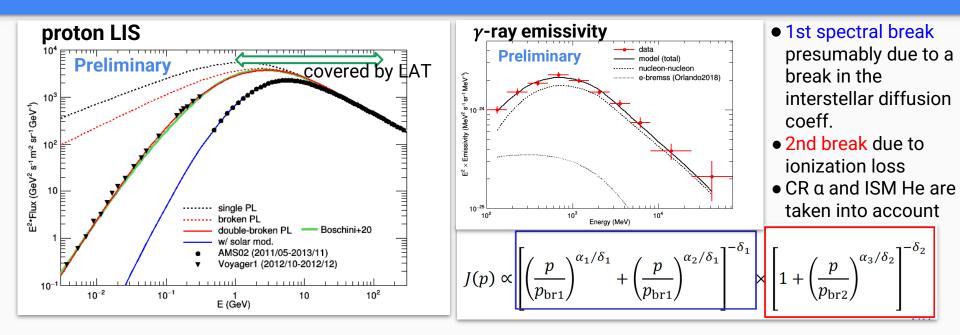
Narrow HI gives ~1.5 times larger γ -ray emissivities than broad HI => agree with expectations ("broad HI" = "thin HI", "narrow HI" = "w/ dark gas")



Results with Final Model

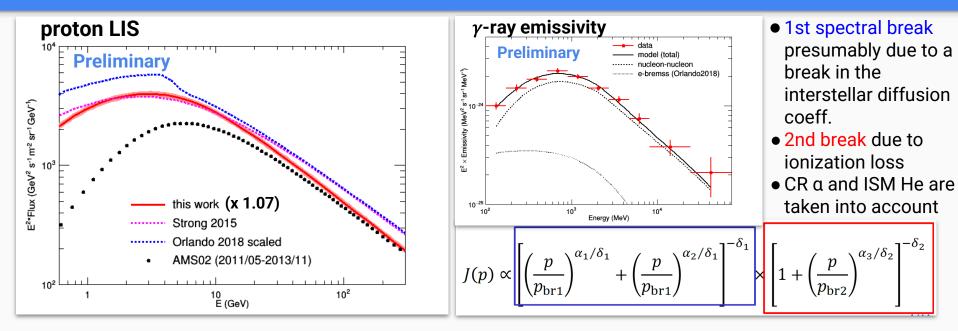
Final model reproduces the data well (see prev. slide)

- IVC, narrow HI, broad HI, Wco, dust_res
- Isotropic, Inverse Compton, γ-ray sources


Spectrum of each component shows relative contribution of each gas phase

broad HI = thin HI narrow HI = thick HI residual gas = CO-dark H₂ [mass of N_{HI}^{thick} (over thin HI case) ~ mass of CO-dark H₂]

T. Mizuno 2022.03.15 7/10


CR Properties

We fitted CR & γ -ray data with analytical function simultaneously to constrain the LIS

- Our model reproduces the data well, agrees with Boschini+20 (w/ detailed CR transport in heliosphere)
- Rbr1=7.1+/-0.3 (GV) and delta1=0.07+/-0.01 (B/C ratio, etc. give 3-5 GV)
- Scaling factor for γ -ray is 1.07+/-0.03

CR Properties (Contd.)

We fitted CR & γ -ray data with analytical function simultaneously to constrain the LIS

- Our model reproduces the data well, agrees with Boschini+20 (w/ detailed CR transport in heliosphere)
- Rbr1=7.1+/-0.3 (GV) and delta1=0.07+/-0.01 (B/C ratio, etc. give 3-5 GV)
- γ -ray emissivity <u>agrees with CR measurements within 10%</u> (solves ~30% discrepancy in past studies)

Summary & Future Prospect

We applied HI-line-profile based analysis to MBM53-55 clouds and Pegasus loop to investigate CR and gas properties

We succeed in <u>distinguishing</u> thin HI, thick HI and CO-dark H_2 and obtained the following CR properties

- Spectral break of LIS at R~7 GV (direct measurements give 3-5 GV)
- LIS <u>agrees with AMS-02 spectrum</u> within 10% (solves discrepancy in past studies)

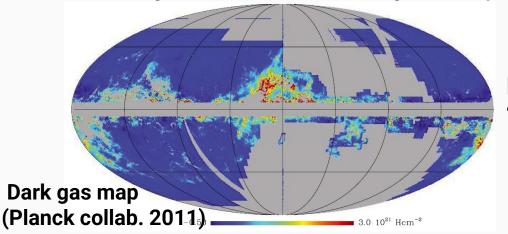
Systematic study of local regions is crucial to investigate LIS, and application to Galactic plane data is also interesting and worth doing

Thank you for your attention

References

- Abdo+09, ApJ 703, 1249
- Boschini+20, ApJS 250, 27
- Casandjian 2015, ApJ 806, 240
- Cummings+16, ApJ 831, 18
- Fukui+14, ApJ 796, 59
- Hayashi+19, ApJ 884, 130
- Heiless & Troland 03, ApJ 586, 1067
- Kalberla+20, A&A 639, 26
- Mizuno+16, ApJ 833, 278
- Mizuno+20, ApJ 890, 120
- Orlando 2018, MNRAS 475, 2724
- Planck Collaboration XXIV (2011), A&A 536, 24
- Porter+17, ApJ 846, 23
- Smith+2014, MNRAS 441, 1628
- Strong 2015, Proc. ICRC 34, 506
- Wolfire+2010, ApJ 716, 1191
- Yamamoto+06, ApJ 642, 307

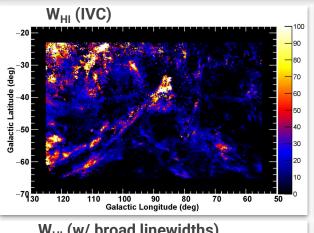
Backup Slide

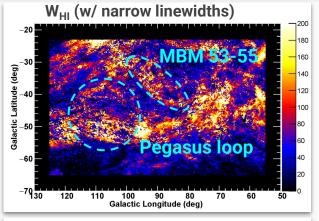

Motivation: Gas and CRs

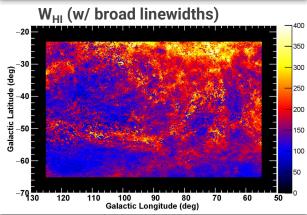
Goal: Accurately measure gas and cosmic rays (CRs) in Milky Way

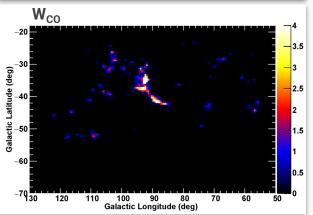
(Simplest) Way: Use HI and CO lines to trace HI and H₂ gas, then use γ -ray to obtain I_{CR} (\propto I $_{\gamma}$ /N_H)

Issue: Significant amount of gas not properly traced by HI/CO lines

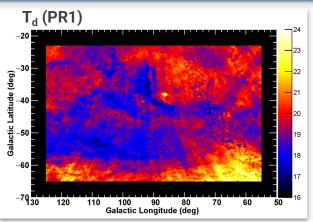


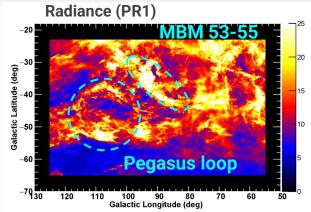

Dust and γ -ray have been used to trace "Dark gas", but they cannot distinguish


- optically thick HI and CO-dark H₂
- gas phases along the line of sight


T. Mizuno 2022.03.15 13/10

ISM Gas Maps (HI & CO)

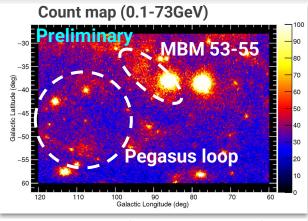

We prepared $3W_{HI}$ and W_{CO} maps (K km/s) as initial gas model


intermediate velocity cloud

- narrow HI (T_D <1000K)
- broad HI (T_D>1000K)
- W_{CO} (to trace CO-bright H_2)

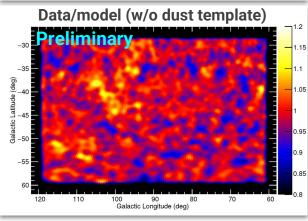
Narrow HI shows coherent structures that correspond to MBM 53-55 clouds and Pegasus loop (known to be dark-gas rich)

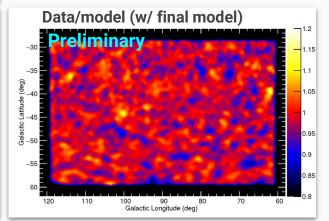
Dust Maps



(narrow HI is associated with MBM53-55 and Pegasus loop seen in dust map)

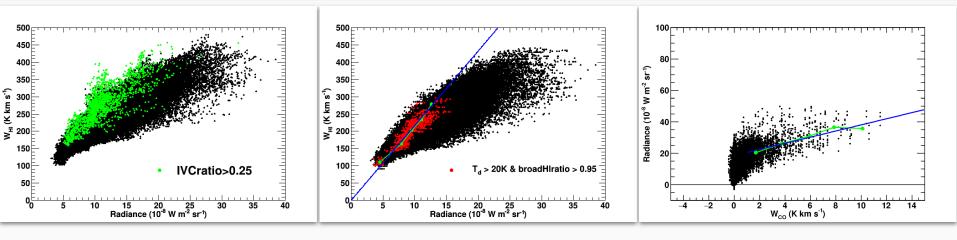
We also employed Planck (R1 and R2) dust Radiance and tau353 maps as NH_{tot} model

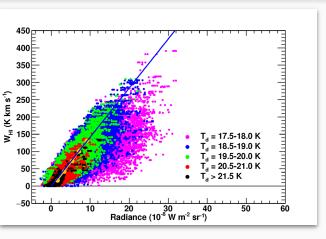

Model and Analysis

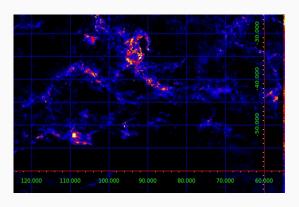


First modeled data with $3W_{\rm HI}+W_{\rm CO}+Iso+IC+sources$ and observed residuals in MBM53-55 and Pegasus loop (btm. left)

Then applied a correction proposed by Kalbarla+20 (p3), but residual remains => HI not fully trace gas (even w/ linewidth info.)


So we employed dust maps to model residual gas

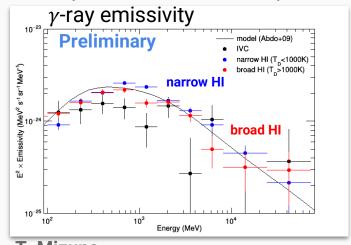

Narrow HI gives \sim 1.5 times larger γ -ray emissivities than broad HI => We applied a T_s correction to it and obtained a final model (btm. right)

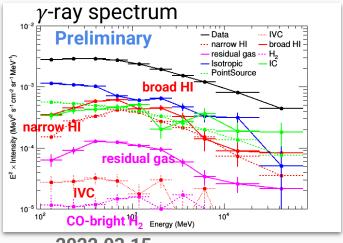

Construction of Residual Gas Template

- 1) We found outliers in $W_{HI}(tot)$ -Rad are affected by IVC. We removed them from W_{HI} assuming they have no dust. Now we have $W_{HI}(narrow+broad\ HI)$
- 2) We selected "warm-HI rich" (warmHIfrac>0.95) and "high-Tdust" (>20K) area and obtained W_{HI} (broad HI)-Rad ratio. We removed "broad HI gas" from W_{HI} and Rad using this ratio. Now we have W_{HI} (narrow HI) and Rad (narrow HI, CO-brightH₂ and residual gas) 3) We obtained W_{CO} -Rad ratio. We removed CO-bright H₂ from Rad using this ratio. Now we have Rad (narrow HI, residual gas)

Construction of Residual Gas Template (Contd.)

4) We selected high Tdust (>20K) area to reduce contamination from residual gas and obtained W_{HI} (narrow HI)-Rad ratio. We removed narrow HI from W_{HI} and Rad using this ratio. Now we have Rad_res and use it as residual gas template.


Results with Final Model


Final model reproduces the data well (see prev. slide)

- IVC, narrow HI (w/ optical depth correction), broad HI, Wco, dust_res
- Isotropic, Inverse Compton, γ-ray sources

Emissivity ($\propto I_{CR}$) of narrow HI agrees with that of broad HI and a model at 10% level

Spectrum of each component shows relative contribution of each gas phase

broad HI = thin HI narrow HI = thick HI residual gas = CO-dark H₂ [mass of N_H^{thick} (over thin HI case) ~ mass of CO-dark H₂]

T. Mizuno

2022.03.15

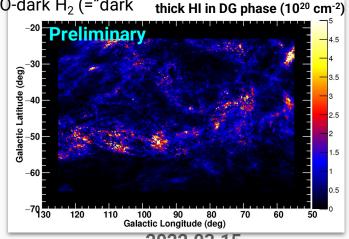
19/10

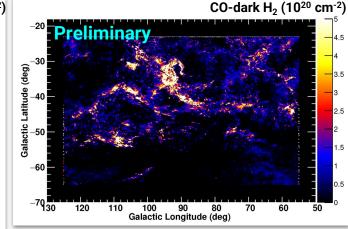
Discussion 1: ISM Gas Properties

We interpret broadHI=thinHI, narrowHI=thickHI, residual gas=CO-dark H_2

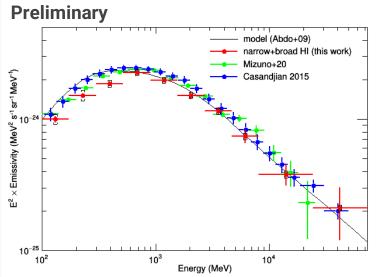
Assuming uniform CR intensity, we evaluated N_H of each gas phase

Ratio of thick HI (in dark gas phase) and COdark H_2 is ~1:1


Fraction of thick HI and CO-dark H₂ (="dark


gas") to total is $\sim 20\%$

We succeed in distinguishing thick HI and CO-dark H₂


Their spatial distribution may help us understand gas evolution

phase	∫N(H)dΩ (10²² cm⁻² deg²) (∝Mass)
broad HI (thin HI)	39.9 (~3x10 ⁴ Msun for d=150pc)
narrow HI (thick HI)	26.1 (<u>8.0</u> over the thin HI case)
residual gas (CO-dark H ₂)	7.9
CO-bright H ₂	1.1
IVC	2.8

Discussion 2: CR Properties

CR properties can be evaluated in detail with fewer gas templates

We added narrow HI and broad HI templates

Emissivity (roughly) agrees with those of other studies and a model, but

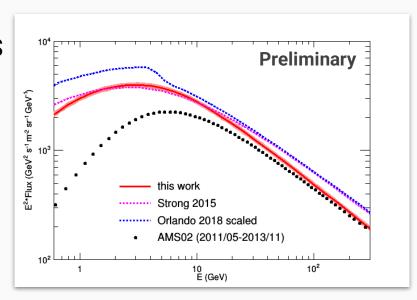
- Our spectrum is <u>10-15% lower</u> than other Fermi-LAT results
- Small deviation from a model in low energy

CR Properties (Contd.)

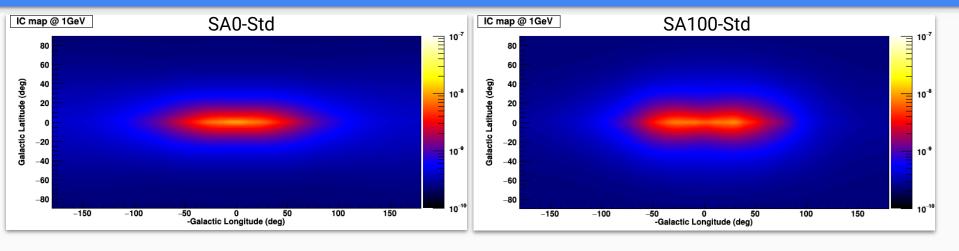
We used CR & γ-ray data constrain the LIS

- LIS is modeled as a power-law (PL) of momentum(p) with two breaks
 - \circ α_1 and α_2 show indices in high and medium energy ranges
 - \circ p_{br1} and δ_1 control the 1st spectral break presumably due to a break in the interstellar diffusion coefficient inferred by B/C ratio (e.g., Ptuskin+06)
 - \circ p_{b2} and δ_2 control the 2nd break due to ionization loss (e.g., Cummings+16)
 - \circ α_3 show the index below this break
 - force-field approximation for solar modulation
- γ-ray emissivity; p-p (Kamae+06 and AAfrag) + e-bremss (Orlando2018)
- Fit CR (p, He) & γ-ray data simultaneously

$$J(p) \propto \left[\left(\frac{p}{p_{\rm br1}} \right)^{\alpha_1/\delta_1} + \left(\frac{p}{p_{\rm br1}} \right)^{\alpha_2/\delta_1} \right]^{-\delta_1} \times \left[1 + \left(\frac{p}{p_{\rm br2}} \right)^{\alpha_3/\delta_2} \right]^{-\delta_2}$$


T. Mizuno 2022.03.15 22/10

Proton LIS based on γ -ray Emissivities


Several studies (Strong 2015, Orlando 2018) used γ -ray emissivity (Casandjian 2015) and reported ~30% larger proton LIS than that expected by measurements at the Earth

Our new emissivity is 10-15% lower, giving LIS consistent with AMS-02 spectrum within 10%

 It is based on a particular area in the sky; systematic study of local regions is crucial to settle the issue and investigate possible local variation of CR spectrum

Testing IC Models

We tested 9 IC models (3 CR distributions, 3 ISRFs) and a model used in Mizuno+16 (54_77Xvarh7S) against gamma-ray data using 3Hi+CO gas template

SA0 gives the best fit and difference among 3 ISRF minor. So we will use SA0-Std in this study

T_S Correction

Assuming a single brightness temperature (Tp) for simplicity, radiative transfer gives W_{HI} and optical depth of HI (Tau_{HI}) as a function of ΔV_{HI} (=W_{HI}/Tp) (Fukui+14)

$$W_{\rm H\,I}({\rm main}) \, ({\rm K\,km\,s^{-1}}) = [T_{\rm s} \, ({\rm K}) - T_{\rm bg} \, ({\rm K})] \cdot \Delta V_{\rm H\,I} \, ({\rm km\,s^{-1}}) \\ \cdot [1 - \exp(-\tau_{\rm H\,I}({\rm main}))], \qquad (3)$$

$$\tau_{\rm H\,I}({\rm main}) = \frac{N_{\rm H\,I}({\rm main}) \, ({\rm cm^{-2}})}{1.823 \times 10^{18}} \cdot \frac{1}{T_{\rm s} \, ({\rm K})} \cdot \frac{1}{\Delta V_{\rm H\,I} \, ({\rm km\,s^{-1}})}, \qquad (4)$$

Then, we have total column density as

$$N_{\rm H} = -1.82 \times 10^{18} \cdot T_{\rm S} \cdot \Delta V_{\rm HI} \cdot \log \left[1 - \frac{w_{\rm HI}}{(T_{\rm S} - T_{\rm bg}) \Delta V_{\rm HI}} \right]$$