

Fermi LAT Observations of the Supernova Remnant G8.7-0.1

Accepted by ApJ, arXiv:1109.3017

OYoshitaka Hanabata (Hiroshima Univ.), Hideaki Katagiri (Ibaraki Univ.), Takaaki Tanaka (KIPAC/Stanford), Elizabeth Hays (NASA/GSFC) for the Fermi LAT collaboration Sep 22 2011 ASJ meeting@Kagoshima Univ.

SNR G8.7-0.1

TeV count map: HESS J1804-216

– (Aharonian et al. 2006)

Mixed Morphology SNR

Distance: 3.2-6 kpc

Middle-Aged: I.5 - 2.8x10⁴ yr

Molecular clouds (MCs) and single OH maser are found in the vicinity of the G8.7-0.1.

 π^0 decay gamma rays from the interaction of the MCs and the SNR are expected.

The relationship among G8.7-0.1 and TeV unidentified source HESS J1804-216 is interesting for diffusion process of cosmic rays.

Analysis Procedures

- Data set: ~23 months survey mode data from Aug 4, 2008 to July 9, 2010 (MET: 239557417 - 300403505)
- Science Tools: v9r15p2
- Selections:
 - 0.2-100 GeV, P6_V3_Diffuse, Zenith cut < 105 deg</p>
 - ROI: 20x20 deg
 - No LAT GRB in ROI
- Binned likelihood with gtlike
 - Diffuse model: gll_iem_v02.fit, isotropic_iem_v02.txt
 - ► IFGL sources included in the model

Comparison with other wavelength images

+: PSR J1803-2137, +: PSR J1806-2125, +: Suzaku J1804-2140, ^O: SNR G8.31-0.09

- Source E: major emission part, significantly extended (Disk radius of $\sigma=0.37^{\circ}$) and positional coincidence with the radio emission.
- Source W: consistent with a point source model and has no counterpart. The GeV gamma rays overlap with spatially-connected MCs.

Morphological Correlation

Morphological correlation with emissions of other wavebands were evaluated with binned likelihood using 2-100 GeV data.

Spatial Model	-2∆log(L₀/L)	Additional Degree of Freedom		
Null Hypothesis	0	0		
3 point sources	433.4	12		
VLA 90 cm + Source W	436.5-462.4 *	6		
HESS	404.8-408.0 [*]	2		
Uniform disk and point source	477.8	9		

*To allow for background fluctuation, fits were performed with various extracted regions, where a lower limit is changed 0-15% of the peak emission.

The radio morphology correlates reasonably well with the GeV emission while the TeV morphology does not.

SEDs

Total spectrum

 Having a spectral break around ~2.4 GeV (4.4σ).
 Not consistent with the extrapolation of the TeV spectrum. (Quantitatively evaluated by Chi-square test.)

The GeV gamma-ray spectrum is naturally explained by π^0 decay produced by the interaction of the MCs and particles accelerated by G8.7-0.1.

The emission from secondary particles does not affect to the conclusion.

Leptonic models struggle to match the GeV emission.

Brems.: K_{ep} is required much larger than ~0.01 (local cosmic-ray abundance).
 IC: A large amount of electron energy (~10⁵¹erg) is required unless the radiation filed is 10 times larger than our best guess.

One Explanation of the TeV emission

The GeV emission: interaction of particles confined in the SNR and adjacent MCs.

■TeV spectral index: 2.72 +/- 0.06

Consistent with the particle spectral index predicted by a theory assuming the energydependent diffusion of particles accelerated in an SNR (e.g., Aharonian & Atoyan 1996)

Performing the modeling for the GeV and TeV spectra with the above theory. $R_{diff} = 2\sqrt{D(E)(t - \chi(E))}$

For the TeV emission, particle spectrum (Gabici et al., 2009)

$$f(E,R,t) = \frac{N_0 E^{-s}}{\pi^{3/2} R_{\text{diff}}^3} \exp\left(-\frac{R^2}{R_{\text{diff}}^2}\right) \text{ GeV}^{-1} \text{ cm}^{-3}$$

 $\chi(E)$ represents the confinement of particles

Diffusion coefficient (free parameter)

 $D(E) = D_{10}(E/10 \,{\rm GeV})^{\delta}$

Modeling for GeV-TeV spectrum

Obtained by the cutoff energy of particle spectrum:

 $R_{TeV}^2/R_{diff}^2 = R_{TeV}^2/[4D_{10}(E/10 \text{ GeV})^{\delta} (t - \chi(E))], R_{TeV} > 26 \text{ pc (apparent size of the SNR)}$

Observed flux $F_{TeV} \propto W_{\textit{tot}} D_{10}^{-3/2} 10^{3\delta/2} M_{TeV}/4\pi d^2$

Upper limit of M_{TeV} is constrained to be $2.0 \times 10^6 M_{solar}$ by NANTEN. TeV emission is naturally explained by the interaction of the escaped particles and MCs. (Although PWN origin cannot be ruled out.)

Summary

Detailed investigation of GeV gamma rays around the SNR G8.7-0.1.

The major emission part is significantly extended and positional coincidence with G8.7-0.1.

They are overlapped with spatially-connected MCs.

The GeV spectrum is naturally explained by the π⁰ decay in MCs interacting with the particles accelerated by G8.7-0.1.

Relation between the GeV and TeV emission

- The GeV morphology does not correlate well with the TeV emission and the GeV spectrum is not consistent with the extrapolation of the TeV spectrum.
- The TeV spectrum is explained by the interaction of the energydependent diffusion of particles accelerated in G8.7-0.1 and MCs.

Back-up Slids

LAT Count Map

2-10 GeV (10°x10°)

+: IFGL Catalog Source
 Regions used to evaluating the systematics for the energy dependence of the Galactic diffuse model

The average surface brightness of the G8.7-0.1 region is ~ 2 times larger than that of the Galactic plane.

No gamma-ray pulsations are found around G8.7-0.1.

Modeling Assumption

- Particle injection: impulsive source assumption (injected at t=0).
- Particle spectrum: smoothed broken power-law (constrained by the radio spectrum).
- Electron Energy loss: ionization (Coulomb scattering), bremsstrahlung, synchrotron processes, IC scattering (The modification of the electron spectral distribution calculated by Atoyan (1995).)
- Distance: 4.0 kpc
- Age: 2.5x10⁴ yr
- Secondary spectrum: calculated by Kamae et al 2006.

Modeling Results

Table 2: Parameters of the models for the *Fermi* LAT sources.

Model	$K_{ep}{}^{a}$	$s_{\rm L}{}^{\rm b}$	$p_{b}{}^{c}$	$s_{\rm H}{}^{\rm d}$	В	$\bar{n}_{ m H}{}^{ m e}$	$W_p{}^{ m f}$	$W_e{}^{ m f}$
			(GeV c^{-1})		(µG)	(cm^{-3})	(10^{49} erg)	(10^{49} erg)
(a) Pion ($\bar{n}_{\rm H} = 100 {\rm cm}^{-3}$)	0.01	2.0	3	2.7	100	100	2.8	4.6×10^{-2}
(b) Pion ($\bar{n}_{\rm H} = 1000 {\rm cm}^{-3}$)	0.01	2.0	3	2.7	400	1000	0.30	7.2×10^{-4}
(c) Bremsstrahlung	1	2.0	5	2.7	25	100	0.22	0.36
(d) Inverse Compton ^g	1	2.0	15	3.5	1	0.1	48	99