

<u>Fermi LAT study of cosmic-</u> <u>rays and the interstellar</u> <u>medium in nearby</u> <u>molecular clouds</u>

Katsuhiro Hayashi and Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT Collaboration

ASJ meeting @Kagoshima Univ. Sep 21, 2011

Giant Molecular Cloud

- Temperature ~10K, Mass ~10⁴⁻⁶M_sun, density ~10²-10³ cm⁻³
- Some GMCs close to the solar system (Orion, Taurus, etc)
- Emission/absorption mechanism
 - rotational transition of molecule \rightarrow radio
 - extinction/emission by dust \rightarrow optical, infra-red
 - interaction with CR \rightarrow gamma-ray

H₂ (main component of molecular gas) is not detectable directly

pace Telescope

Gamma-ray emissivity does not depend on the gas temperature, phase, etc. → Study of CR spectrum and matter distribution by gamma-rays

Although EGRET observed several GMCs in 90', <u>detailed</u> <u>study of CRs and matter</u> <u>distribution has not been</u> <u>performed</u> due to the limited sensitivity.

Sermi Gamma-ray Space Telescope

- Launched on June 11, 2008
- Two instruments:
 - Large Area Telescope (LAT) e+/e- pair-conversion with silicon detectors

- Gamma-ray Burst Monitor (GBM)

	CGRO-EGRET	Fermi-LAT
Energy range	20 MeV – 30 GeV	20 MeV – 300 GeV
Effective area	1500 cm ²	>8000 cm ²
Angular resolution @100 MeV @ 1GeV	5.8 deg 1.7 deg	3.5 deg 0.6 deg
Field of view	0.5 str	2.5 str
Detected sources (>5σ)	271 (10 years)	1873 (2 years)

Motivation

Fermi enables studying the diffuse gamma-ray emission with unprecedented sensitivity.

Detect gamma-ray from small GMCs (M <10⁴ M_sun)

→ We can study CRs and matter distribution in wide-ranging samples.

Reveal the CRs and matter distribution in the vicinity of the solar system (<~500pc).

• Cosmic-rays

What is the distribution of local CRs?

- Matter distribution
 - Molecular mass calibration ratio
 - Xco = N(H₂)/W(CO) ~(1-2) x 10^{20} cm⁻²/(K km/s) is highly uncertain.
 - How is the gas not traced by HI and CO surveys spread?

Fermi-LAT is an ideal instrument to study these questions.

ASJ meeting, @Kagoshima Univ. Sep 21, 2011 Gamma-ray Space Telescope
ASJ meeting, @Kagoshima Univ. Sep 21, 2011
Targets; Chamaeleon & RCrA regions

Data Count Map (E>250 MeV) smoothed with a gaussian of 0.5 deg

- Contour: CO line intensity (Dame et al. 1987)
- Cyan circles: the position of point source (TS>=50, 1FGL Catalog)
- Yellow rectangle: the region used for the fitting
- Cyan rectangle: the region in which sources are taken into account in the fitting

Katsuhiro Hayashi

Analysis Procedure (1)

Prepare template gas maps (HI, CO and E(B-V)res) for each region.

- > N(HI): LAB survey by Kalberla et al. (2005)
 - HI optical depth correction; spin temperature (T_S) = 125 K
 - T_S = (100K $\sim \infty$) \rightarrow evaluate the <u>systematic uncertainty</u>
- > Wco: composite survey by Dame et al. (2001)
- E(B-V)res: Gas not properly traced by HI and CO surveys. Estimated by E(B-V) reddening map (Schlegel et al. 1998)

Fit the gamma-ray data and obtained each gas emissivityin 8 logarithmically spaced energy bins from 250MeV to10GeV. $I(l,b,E) = \sum_{i=1}^{2} q_{HI,i}(E) \times N(HI)(l,b)_i + q_{CO}(E) \times W(CO)(l,b)$ Galactocentric radiusR = -0.8 kpc8-8.5 kpc

Fit the normalization of the IC model (GALPROP model).

Isotropic component (Extra galactic diffuse + BGD) is fixed but its systematic uncertainty is examined.

Point sources: 1FGL catalog (TS>50)

HI emissivity Spectrum

- HI emissivity spectra in the Cham. and the R CrA regions (T_S = 125K).
- Shaded areas indicate the <u>systematic uncertainties</u> due to
 - Optical depth correction (T_S = $100K \sim \infty$)
 - Isotropic component by changing the intensity +/-10%
- Impact of point source was found to be smaller.

CR Spectrum in Local Region

- Compared obtained HI emissivity spectra with model for LIS. Model uncertainty ;~20% (due to the uncertainty of the nuclear enhancement factor (ε_{M}) and proton flux)
- Spectral shapes of the Cham. & R CrA regions agree with LIS.
- The spectra of two regions and the model are consistent within the systematic uncertainties. Katsuhiro Hayashi

We have studied gamma-ray emission from the Chamaeleon and the R CrA molecular clouds regions.

> We have obtained the gas emissivity spectra with unprecedented sensitivity.

> Systematic uncertainties are carefully evaluated.

Spectral shapes agree well with the model for LIS and the absolute emissivities (CR densities) are consistent within the systematic uncertainty.

To Do:

Compare the obtained emissivities with those of other local regions.

> Calculate the Xco values and molecular masses.

Sample of GMCs

(see also =	Dame et al. 20 Region	05)	Molec	ular Gas	WITHIN 1 R	ULOPARSEC O	e Sun					
	Region			MOLECULAR GAS WITHIN 1 KILOPARSEC OF SUN								
	-	lmin	l _{max}	b _{min}	b _{max}	v (km s ⁻¹)	D (pc)	Ref.	$(10^5 M_{\odot})$	z ^a (pc)	σ ₅ ^b (pc)	
A	Aquila Rift	{ 18:5 34	34° 44	-6° -4	$\left[\begin{array}{c} 10^{\circ} \\ 4 \end{array} \right]$	8	200	1	1.5	9	15	
0	Cloud A	44	49.5	-4	2	27	500	1	0.4°	-7	14	
0	Cloud B	44	54	-4	5	7	300	1	0.4 ^e	0	11	
0	Cloud C	50	55	-1	3.5	24	500	1	0.3	5	12	
v	/ul Rift	54	63	-3	5	10	400	1	0.8	5	12	
0	Cyg Rift	63	86.5	-4	4	7	700	1	8.6 ^d	-4	24	
0	Cyg OB7	87	99	-3	8	-1	800	1	7.5	41	52	
L	indblad Ring	100	164	4	10	1	300	2	1.6	22	28	
64	- 12 km/s"	102	161	-4	10	-12	800	3	8.7	44	59	
C	Cepheus	100	120	11	22	-5	450	4	1.9	131	133	
Т	Taurus	163	178	-22	-9.5	5	140	5	0.3	-37	38	
∫ ₽	Per OB2	{154 {163	162.5 171	-25 -9	-7 - 6	5 -3	350	5	1.3	-84	92	
N	Mon OB1	197.5	205	-1	4	7	800	7	1.6	17	22	
	Drion A	208.5	218	-21	-14.5	5	500	6	1.6	-163	164	
	Drion B	202.5	208	-21	-6	5	500	6	1.7	-129	132	
/ / 1	Mon R2	210	218	-14	-10	7	830	6	1.2	-182	183	
/_	/ela Sheet	272	279	-3	8	0	425	8	0.8	9	19	
	Cham	295	305	- 20	-12	4	215	9	0.1	-60	60	
// 0	Coalsack	300	307	-4	3	-4	175	10	0.04	-2	5	
// 9	3317 – 4	315	320	-6	-2	-6	170	11	0.03	-11	11	
// _1	upus	333	346	4	22	5	170	8	0.3	32	35	
	Oph	350 356	2 5	13 3	24 12.5	3	165	12	0.3	35	39	
	R CrA	357	4	-22	-14	6	150	13	0.03	- 55	55	

Detailed analysis by EGRET (e.g; Digel et al. 1999)

Dermi

Gamma-ray Space Telescope

Chamaeleon & RCrA regions

high latitude position (-19<b<-12deg; 45 pc<|z|<70 pc) → avoid confusion with the strong emission from the Galactic plane.

Template Gas Maps

Chamaeleon region

RCrA region

Gas of traced by excess of E(B-V)

- Some fraction of gas is not detectable by 21 cm line (atomic hydrogen) and CO line (e,g; Grenier et al. 2005, Goodman et al. 2009)
- We estimated their contribution from the emission of dust.

