X線連星(NASA)



北村 唯子、高橋 弘充、深澤 泰司、永江 修(広島大学)

2011年9月 天文学会秋季年会

すざく(JAXA)

## 低質量X線連星

(Low-Mass X-ray Binary: LMXB)

▶コンパクト星:ブラックホール(BH) 又は

弱磁場中性子星(NS)

▶伴星: 質量~1M<sub>SUN</sub> 程度の恒星

重力エネルギーの解放によりX線で明るく輝く





"Low/Hard 状態" となることがある

- ◆"Low/Hard 状態"とは?
  - ⇒(NS連星系)光度L~10<sup>36</sup> erg s<sup>-1</sup> (~0.01L<sub>Edd</sub>)程度の暗い状態。
- ◆観測は主にL >~1036 erg s-1の以上明るい天体に限られている。

## Low/Hard状態のスペクトル



## 研究目的

L > ~10<sup>36</sup> erg s<sup>-1</sup> 以上で観測が行われてきたLMXBのLow/Hard状態



光度が低い場合( L < ~10<sup>36</sup> erg s<sup>-1</sup> 以下)のLow/Hard状態の

- ·天体周辺の構造(放射領域、温度 T、光学的厚さτ)
- ・ハード側の放射の起源

どうなっているのか?

【Nagae et al.(2008) による先行研究】

- ◆4U 1700+24: L~ 10<sup>32</sup> -10<sup>34</sup> erg s<sup>-1</sup>程度の最も暗いNS LMXB
- ◆暗いため、~10 keV までのデータしか取得できていない



**Low/Hard 状態**の光度が中間( *L* ~10<sup>35</sup> erg s<sup>-1</sup>)場合の NS-LMXBを観測し、光度によって天体周辺の物理状態が どのように変化するのかを明らかにしたい

## 「すざく」によるIGR J16194-2810の観測

#### 解析天体: IGR J16194-2810

-中性子星とM型巨星のX線連星

-距離:3.7 kpc(近傍に存在している)

-光度: L<sub>2-10</sub>~7.2×10<sup>34</sup> erg s<sup>-1</sup>

(INTEGRAL (2006)とSwift (2007)の観測)



### 「すざく」の観測ログ

•定常的に光度~10<sup>35</sup> erg s<sup>-1</sup> 程度を保つ

・定常的に光度を保つ天体の中で2番目に暗い

-観測期間:2009/02/05-02/06

-露光時間:約45 ksec

- -光度: L<sub>0.8-10</sub>~ 7.6×10<sup>34</sup> erg s<sup>-1</sup>
- ・円盤からの放射は低温
- ・Low/Hard状態では、逆コンプトン散乱された放射が高エネルギー側まで伸びる ⇒幅広い観測帯域が必要

「すざく」のXIS、HXD-PINを用いることにより X線で広帯域(0.8-70 keV)の観測が可能。

## 結果(1) 時間平均スペクトル解析

Model. DBB + IC\_BB
IC\_BB···CompPS を用いた

|                       | DBB                                    |  |  |
|-----------------------|----------------------------------------|--|--|
| T <sub>in</sub> (keV) | 0.6 +1.1 -0.1                          |  |  |
| R <sub>in</sub> (km)  | 0.7(<1.0) //\                          |  |  |
|                       | IC_BB                                  |  |  |
| T <sub>BB</sub> (keV) | 1.05 <sup>+0.07</sup> <sub>-0.04</sub> |  |  |
| $	au_{BB}$            | 0.56 <sup>+0.04</sup> <sub>-0.05</sub> |  |  |
| $R_{\rm BB}(m)$       | 680 <sup>+60</sup> -220                |  |  |

$$T_{\rm e}$$
 = 100 keV (fix)  
 $\chi_{\rm v}^{2}$ (d.o.f) = 1.13(588)

R<sub>in</sub> が小さい(R<sub>in</sub>>10 km) ⇒このモデルでは再現できていない



## 結果(1) 時間平均スペクトル解析

|                       | IC_DBB          |  |  |  |
|-----------------------|-----------------|--|--|--|
| T <sub>in</sub> (keV) | $0.11 \pm 0.02$ |  |  |  |
| $	au_{DBB}$           | (0.1<)0.2       |  |  |  |
| R <sub>in</sub> (km)  | 40 +30 -20      |  |  |  |

|                       | IC_BB                             |  |  |
|-----------------------|-----------------------------------|--|--|
| T <sub>BB</sub> (keV) | 1.05±0.05                         |  |  |
| $	au_{BB}$            | $0.6 \pm 0.1$                     |  |  |
| $R_{\rm BB}(m)$       | 680 <sup>+30</sup> <sub>-40</sub> |  |  |

$$T_{\rm e}$$
 = 100 keV (fix)  
 $\chi_{\rm v}^{2}$ (d.o.f) = 1.14 (594)

このモデルでスペクトル再現できた



## 4U 1700+24との比較

#### 4U 1700+24・・・NSとM型巨星の連星

- 2002年8月 最も明るかったときの XMM-Newton の観測 2007年8月 最も暗かったときの「すざく」の観測
- 銀河系内のX線連星の中で最も近い(420 pc)

比較

(Nagae et al. 2008)

| $T_{\rm e}({\rm keV}) = 100  {\rm keV}  ({\rm fix})$ | 明 |  | 暗 |
|------------------------------------------------------|---|--|---|
|------------------------------------------------------|---|--|---|

|                            | IGR J16194-2810                   | 4U 1700+24( <i>XMM</i> ) | 4U 1700+24(すざく)                |
|----------------------------|-----------------------------------|--------------------------|--------------------------------|
| L(erg s <sup>-1</sup> )    | ~8 × 10 <sup>34</sup>             | ~2 × 10 <sup>34</sup>    | $\sim 2 \times 10^{32}$        |
| T <sub>BB</sub> (keV)      | 1.05±0.05                         | 1.07±0.01                | 0.76±0.01                      |
| $	au_{BB}$                 | 0.6±0.1                           | 1.71±0.03                | 0.33±0.05                      |
| <i>R</i> <sub>BB</sub> (m) | 680 <sup>+30</sup> <sub>-40</sub> | 240±10                   | 45 <sup>+4</sup> <sub>-3</sub> |
| T <sub>DBB</sub> (keV)     | 0.11±0.02                         | 0.07±0.01                | <0.05                          |
| $	au_{DBB}$                | (0.1<)0.2                         | 0.46±0.01                | <0.35                          |
| R <sub>DBB</sub> (km)      | 40 +30 -20                        | 13.3+0.1                 | >4.2                           |

結・4U 1700+24のXMMとすざくの結果:光度⇒高、T<sub>BB</sub>⇒大 明るさに相関している。 果・IGR J16194 2810と4U 1700+24(XMM)の結果:明るさとT<sub>BB</sub>の相関関係はみられない。

# 議論 T<sub>BB</sub> の違いについて(仮説)

### 今回解析した天体

4U 1700+24



観測する方向の違いで Compton 雲の 光学的厚さ  $\tau_{RR}$  が変化する可能性がある。

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」とき にわけ、スペクトルを作成 ⇒ 変動しているか?



時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」ときにわけ、スペクトルを作成 ⇒ 変動しているか?



時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」とき にわけ、スペクトルを作成 ⇒ 変動しているか?



時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった







## 結果(3) スペクトル解析



●diskからの放射が観測されなかったのは・・・

解釈)disk周辺の電子雲がNSに落ち込んだ
⇒DBBをICする物質がなくなったため?

## まとめ

- 定常的に~10<sup>35</sup> erg s<sup>-1</sup> 程度を保つ低光度なNS LMXB IGR J16194-2810 のLow/Hard状態を「すざく」を用いて 観測・解析を行った。
- → スペクトルは2成分で再現できた ⇒ IC\_DBB + IC\_BB
  - ▶ 2 keV以下・・・diskのDBBがICされたモデル。
  - ▶ 2 keV以上・・・NSのBBがICされたモデル。
- ▶ より光度の低い(~10³⁴ erg s⁻¹)4U 1700+24 との比較。
  - ▶ τ<sub>BB</sub>が異なる⇒観測する方向によって違う可能性がある。
- ▶ 光度曲線→数100sec のタイムスケールでの変動がみられた。
  - スペクトルを光度の「高い」とき、「暗い」ときにわけ、 変動を調べた。
    - ⇒このタイムスケールでは、明るさによってスペクトルが 変動しているわけではなさそうである。