X線連星(NASA)

「すざく」衛星を用いた低質量X線連星 IGR J16194-2810のLow/Hard 状態の観測

すざく(JAXA)

北村 唯子、高橋 弘充、深澤 泰司、永江 修(広島大学)

2011年9月 天文学会秋季年会

"Low/Hard 状態" となることがある

◆ "Low/Hard 状態"とは?
 ⇒ (NS連星系)光度L ~10³⁶ erg s⁻¹ (~0.01L_{Edd})程度の暗い状態。
 ◆ 観測は主にL >~10³⁶ erg s⁻¹の以上明るい天体に限られている。

研究目的

L>~10³⁶ erg s⁻¹ 以上で観測が行われてきたLMXBのLow/Hard状態

光度が低い場合(L<~10³⁶ erg s⁻¹以下)のLow/Hard状態の •天体周辺の構造(放射領域、温度 T、光学的厚さτ) •ハード側の放射の起源 どうなっているのか?

【Nagae et al.(2008) による先行研究】 ◆4U 1700+24: L~ 10³² -10³⁴ erg s⁻¹程度の最も暗いNS – LMXB ◆暗いため、~10 keV までのデータしか取得できていない

Low/Hard 状態の光度が中間(L~10³⁵ erg s⁻¹)場合の NS-LMXBを観測し、光度によって天体周辺の物理状態が どのように変化するのかを明らかにしたい

・Low/Hard状態では、逆コンプトン散乱された放射が高エネルギー側まで伸びる
 ⇒幅広い観測帯域が必要
 「すざく」のXIS、HXD-PINを用いることにより
 X線で広帯域(0.8 – 70 keV)の観測が可能。

4U 1700+24との比較

/ _e (keV)=100 keV (fix) 明			
	IGR J16194-2810	4U 1700+24(<i>XMM</i>)	4U 1700+24(すざく)
L(erg s ⁻¹)	$\sim 8 \times 10^{34}$	$\sim 2 \times 10^{34}$	$\sim 2 \times 10^{32}$
T _{BB} (keV)	1.05 ± 0.05	1.07 ± 0.01	0.76±0.01
τ _{BB}	0.6±0.1	1.71±0.03	0.33±0.05
R _{BB} (m)	680 ⁺³⁰ -40	240±10	45 ⁺⁴ ₋₃
T _{DBB} (keV)	0.11±0.02	0.07±0.01	<0.05
τ _{DBB}	(0.1<)0.2	0.46 ± 0.01	<0.35
R _{DBB} (km)	40 ⁺³⁰ ₋₂₀	13.3 ^{+0.1} -0.2	>4.2

結・4U 1700+24のXMMとすざくの結果:光度⇒高、T_{BB}⇒大 明るさに相関している。 果・IGR J16194 2810と4U 1700+24(XMM)の結果:明るさとT_{BB}の相関関係はみられない。

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」とき にわけ、スペクトルを作成 ⇒ 変動しているか? Bin time: 250.0 s

時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」とき にわけ、スペクトルを作成 ⇒ 変動しているか?

時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった

全エネルギー帯域の光度曲線から、光度の「高い」とき、「低い」とき にわけ、スペクトルを作成 ⇒ 変動しているか?

時間平均スペクトルのモデル×constant factor でフィット ⇒スペクトルを再現できたため、明るさによるスペクトルの変動はみられなかった

¹⁰ ksec

結果(3) スペクトル解析

●diskからの放射が観測されなかったのは・・・

解釈)disk周辺の電子雲がNSに落ち込んだ ⇒DBBをICする物質がなくなったため?

まとめ

- 定常的に~10³⁵ erg s⁻¹ 程度を保つ低光度なNS LMXB
 IGR J16194-2810 のLow/Hard状態を「すざく」を用いて 観測・解析を行った。
- > スペクトルは2成分で再現できた ⇒ IC_DBB + IC_BB
 > 2 keV以下・・・diskのDBBがICされたモデル。
 > 2 keV以上・・・NSのBBがICされたモデル。
- > 光度曲線→数100secのタイムスケールでの変動がみられた。
 > スペクトルを光度の「高い」とき、「暗い」ときにわけ、
 変動を調べた。
 - ⇒このタイムスケールでは、明るさによってスペクトルが 変動しているわけではなさそうである。