

〇林 克洋(広島大)

朴 寅春, 上野 一誠, 西野 翔, 安田 創, 大杉 節, 深沢 泰司, 水野 恒史, 高橋 弘充, 大野 雅功, 遠藤 暁 (広島大), 田島 宏康 (名古屋大), 田中 孝明 (KIPAC/Stanford), 国分 紀秀, 渡辺 伸, 太田 方之, 高橋 忠幸 (ISAS), 中澤 知洋 (東大), 内堀 幸夫, 北村 尚 (放医研), ほか HXI/SGD チーム

日本天文学会春季年会 2012/03/20 @龍谷大学

ASTRO-H/HXI

HXT

FL=12m

▲ 日本の次期X線天文衛星(2014年打ち上げ予定)
▲ 4つの検出器を搭載

SXS(軟X線分光器) SXI(軟X線撮像検出器) HXI(硬X線撮像検出器) SGD(軟γ線検出器)

・硬X線望遠鏡(HXT)の集光による 5-80 keVでのイメージング観測
 ・Si両面ストリップ型検出器(x4枚)、CdTe両面ストリップ型検出器
 (1枚)を層状に重ねた、高感度ハイブリッド検出

PIN)

HXI

10 2

50

・BGOアクティブシールドによる高いバックグラウンド除去率

両面シリコンストリップ検出器 (DSSD)

•n型のバルクに p⁺stirp、n⁺ strip が直交 するように埋め込まれている

- ・入射X線により電子・ホール対が発生
 → <u>P側でホール、N側で電子を収集</u>
 → エネルギー、検出位置情報を得る
- •n⁺strip はp⁺stop で周りを囲むことで
 個々のストリップを孤立化

Specifications				
Size	3.4 x 3.4 cm ²			
Strip pitch	250 μm			
Strip width	150 μm			
Thickness	500 μm			
Number of strips	128			
Strip capacitance	<10pF			
Leakage current	<0.04 nA/strip @-20°C			
Bias voltage	300V			
Energy resolution	<2 keV @60keV (FWHM) with ASIC			

両面シリコンストリップ検出器 (DSSD)

•n型のバルクに p⁺stirp、n⁺ strip が直交 するように埋め込まれている

- ・入射X線により電子・ホール対が発生
 → <u>P側でホール、N側で電子を収集</u>
 → エネルギー、検出位置情報を得る
- FM品: N-side のp⁺stop にAI電極を埋め込む
 → 抵抗によるジョンソンノイズを低減

Specifications			
Size	3.4 x 3.4 cm ²		
Strip pitch	250 μm		
Strip width	150 μm		
Thickness	500 μm		
Number of strips	128		
Strip capacitance	<10pF		
Leakage current	<0.04 nA/strip @-20°C		
Bias voltage	300V		
Energy resolution	<2 keV @60keV (FWHM) with ASIC		

DSSD(FM品)の基礎特性評価

- •暗電流のバイアス依存性
 - **20pA/strip @-15℃** ※要求值: <<u>7</u>0 pA/strip@-15℃
- ・ブレイクダウン電圧
 >500V
 ※完全空乏化電圧:300V
- •²⁴¹Am 照射時のスペクトル (-15 ℃) ※1ch読み出し用プリアンプを用いて測定

エネルギー分解能 @59.5 keV (FWHM)			
P-side	1.23(+/-0.04, stat) keV		
N-side	1.8 (+/-0.1, stat) keV		

N-side p⁺stop の構造改変 → N-side のエネル ギー分解能が ~3.5 keV から ~2 keV まで向上

→ 暗電流、エネルギー分解能の要求性能を 満たす

- 軌道上: (主として)~150 MeV 程度の陽子による放射線を浴びる
- ・シリコン検出器の放射線損傷
 - ✓表面損傷:表面のSiO₂付近で起きる電離的損傷
 - ✓ バルク損傷:バルク内の結晶構造の破壊
 - \rightarrow バンドギャップに新たなエネルギー準位 E_t の発生

荷電子帯

→ 熱励起キャリア(暗電流)増加 → ノイズレベル増大 → エネルギー分解能悪化

⁶⁰Coy線照射実験 → 表面損傷の寄与 プロトン照射実験 → 表面損傷+バルク損傷の寄与

 ・トータルで軌道上 <20 年 分に相当する放射線を照射 ・300V の印加雷圧をかけ 	60 CO DSS DSS DSS DSS DSS D DSS D DSS D Proton beam			
たまま照射 HIMAC ・照射後は-15℃でアニー	放医研 HIMAC	場所	」 広島大学 工学研究科	場所
150 MeV リング	150 MeV	proton energy	2, 6, 10, 20 krad	total dose
3x10 ⁹ cm ⁻² ⁶	3x10 ⁹ cm ⁻²	照射粒子数		

- ・暗電流値はおおよそ照射量に比例して増加
 - ✓ 暗電流値はストリップの埋め込まれていない領域の面積に比例(Foland et al. 1996)
 (0.061 cm²/strip) → <u>~75 pA/cm²/year</u>@-15°C
 - ✓他の両面シリコンストリップセンサーへのγ線照射結果(~60 pA/cm²/year)とほぼ一致
 (Kaneko et al. 2002)
- ・ブレイクダウン電圧: <u>>500V</u>

照射による暗電流値の変化(プロトン照射)

- ・軌道上~10年分に相当するプロトンを照射
- ・照射されたストリップの暗電流増加量(-15℃):6±3(pA/strip) → <u>32±16(pA/cm²/year)</u>
 γ線照射による暗電流増加値(~75 pA/cm²/year)とほぼ同レベル
- ・暗電流損傷定数(α=暗電流増加量/fluence)(25°C):<u>α=3±1(x10⁻⁸ nA/cm)</u>
 他のシリコンストリップセンサーへのプロトン照射実験結果とほぼ一致

(e.g., 3.0x10⁻⁸ nA/cm, Ohsugi et al. 1988)

・ブレイクダウン電圧: <u>>500V</u>

 <u>E_t-E_i低下(照射によってバンドギャップの中心付近に新たなトラップレベルが発生)</u>
 → 暗電流の増加

・ノイズレベルに影響を与える要素

検出器および読み出し回路系の暗電流 (I_n) 、容量 $(C_p, C_{1/f})$ 、抵抗 (R_p, R_s)

$$\overline{\Delta E_{RMS}}^{2} = A \frac{4k_{B}T}{R_{p}} \tau + BI_{n}\tau + C4k_{B}TR_{s}C_{p}^{2}\frac{1}{\tau} + D2\pi C_{1/f}C_{p}^{2}$$

暗電流はショットノイズとしてノイズレベルに影響

-15℃でのノイズレベル

	照射前	20 krad
暗電流値	39 pA	131 pA
ショットノイズ (上記理論式より) (シェイピングタイム=4µsec)	0.37 keV	0.68 keV
トータルノイズ (²⁴¹ Amスペクトル59.5 keV ラインエネ ルギー分解能測定値より)	1.23+/-0.04 keV	1.37+/-0.03 keV

→ 軌道上20年分の照射でも、トータルノイズレベルはエネルギー分解能の要求性能 <2 keVを満たし、照射の影響は十分小さい

ASTRO-H衛星搭載硬X線撮像用シリコン検出器(DSSD)のFM品に対する基礎特性及び 放射線耐性評価を行った

<u>基礎特性</u>

- ✓ 従来に比べてN-side側のエネルギー分解能が向上
- ✓ 暗電流値、エネルギー分解能ともに要求性能を満たす

60Coy線及びプロトンによる放射線耐性評価

- ✓ ⁶⁰Coy線による暗電流増加量:~75 (pA/cm²/year) (-15℃)
- ✓ プロトン照射による暗電流増加量:~30 (pA/cm²/year) (@-15℃)
- ✓ 従来のシリコンセンサーへのγ線・プロトン照射実験の結果とほぼ同等
- ✓ ブレイクダウン電圧 >500V

軌道上20年分に相当する放射線照射を受けても、暗電流増加により増えたショットノイズ (~0.3keV)が、エネルギー分解能悪化に与える影響は十分に小さい

Back up

N-side ノイズレベルのシェイピングタイム依存性

n⁺strip

- ・軌道上(高度~550 km)で、検出器は主に宇宙線陽子によって~1 krad/year の損傷を受ける
- シリコン検出器の放射線損傷

表面損傷

- SiO,層表面付近で生成されたホール →境界の欠陥部分にトラップされる
- → SiO, 層に正電荷が蓄積される

バルク損傷

陽子などの高エネルギー粒子が 結晶格子と弾性衝突

→結晶格子の変異

→ 禁制帯に新たなトラップの準位をつくる → <u>暗電流(ノイズレベル)増加</u>

