「すざく」衛星による1型セイファート銀河 NGC4151のToO観測(2011年)

○平木 一至、深沢 泰司、高橋 弘充、大野 雅功(広島大学)、
 牧島 一夫、野田 博文(東京大学)、山田 真也(理化学研究所)

Seyfert銀河の広帯域X線スペクトル

直接成分や周辺物質からの反射成分 (i.e. 鉄輝線)等が入り混じり複雑

「すざく」では徹底したバックグラウンド 除去により高感度かつ広帯域での観測 を可能に

→各成分を制限することができる

SeyfertのX線スペクトルは フィッティングのみでは分離が 困難。

(直接成分、反射成分、吸収な どが入り混じっているため)

フィッティングで求められる 各成分が正しいかどうか 独立した解析で確認が必要。

NGC4151

- ・ NGC4151は2番目に明るいSeyfert銀河
- 過去NewtonやChandra、Swift、INTEGRALで観測されている
- 2009年頃から徐々に増光しはじめ、2011年10月の時点で歴史的な極大光度に達しているため、「すざく」でのToO観測を提案した

- OSSEでもΓ:1.6、E_{cut}:~100 keV (Jonson et al. 1997)
- SwiftでもΓ:1.8+/-0.1、E_{cut}:>257 keV (Beckmann et al. 2005)
- ・「すざく」でE_{cut}をさらに厳しく制限。

 Kriss et al. (1995) によるとNGC4151ではUV-軟X線領域で吸収線のblueshiftが観測されている。近年AGNで見つかり始めているFeの高電離ラインは 報告がなく、こちらの検出にも期待できる。

目的

本研究では、NGC4151を用いて 広帯域X線スペクトル解析と 時間変動解析による放射成分の分離を行い 1型Seyfert銀河の周辺物質環境の精査を 行うことを目的としている。

本公演ではこの内、鉄輝線回りの吸収線構造と 広帯域スペクトル解析の結果について報告する。

ラインプロファイル

- 2011-11-17と2011-12-18のXIS0,3を足したスペクトル(5-8 keV)
- Fe_{XXV} (6.697 keV) やFe_{XXVI} (6.966 keV) の吸収線が見えている

Energy (keV)

ラインプロファイル

- ・ 2011-11-17と2011-12-18のXIS0,3を足したスペクトル(5-8 keV)
- Fe_{XXV} (6.697 keV) やFe_{XXVI} (6.966 keV) の吸収線が見えている
- ・ 吸収線のエネルギー (He & H-like Feの吸収線でコントアを作成)
 - He-like、H-like Feでラインエネルギーが低めに出る傾向がある。
 - 中心エネルギー:6.626 keV~FeXXIII より

→やや電離度の低い吸収体 + 高電離の吸収体を示唆

Wide Band Spectrum

- ・ 2011-12-18観測の時間平均スペクトル。
- ・ Fit Range: 1-300 keV、red-shiftは0.003319にfix。
- ・ ①:吸収×power-law(cut-offなし)+反射成分
 - 反射成分にはpexmonモデルを使用 (Nandra et al. 2007)
 - 残差に大きなうねり(部分吸収)。
- ②:吸収×部分吸収×power-law(cut-offなし)+反射成分
 吸収構造の改善。GSOで残差のずれ、cut-offの存在?
- ③:吸収×部分吸収×power-law(cut-offあり)+反射成分+gaussian×3
 ⇒Best Fit Model

ベキとFlux

 3回の観測での「の値は一致、Lubinski et al. (2010)でも 「=1.7-1.8と同程度

*1) 現在BGDの差引を模索中

カットオフとFlux

- 50 keVにおけるFluxとE_{cut}との相関
 黒:INTEGRALの結果(Lubinski +10)、赤:「すざく」の結果。
 ⇒最大光度の観測からE_{cut}の下限を決定(E_{cut}>251 keV)。
- 2006-12-18の観測結果が、E_{cut}がfluxと相関があるかどうか検証の鍵になる(現在NXBの検証中)。

まとめ

- 2011-11-17と2011-12-18のNGC4151のToO観測の解析を行い、 過去、
 2006-12-18観測との比較を行った。
- 2011年の観測ではXIS、PIN、GSOで大きく増光していることが確認できた。
- ・ 鉄輝線回りの詳細解析を行った。
 - 2011年の観測ではHe-like、H-like Feでラインエネルギーが低めに出る。 →やや電離度の低い吸収体 + 高電離の吸収体を示唆
- ・ 広帯域スペクトル解析を行った。
 - スペクトルのベキは1.7程度のほぼ一定。
 - NGC4151のカットオフエネルギーの下限値を決めることができた(>251 keV)。

- XSTARで吸収線モデルを作成し、ラインエネルギー、幅などを調べることでラインエネル ギーが本当にシフトしているかを調べる。この際、作成したモデルは光度や吸収量に大 きく依存するため、モデルの精査が必要
- 3回の観測での時間変動解析を行い、広帯域スペクトル解析の結果と合わせて反射成 分、吸収についての成分分離を行う。

電離吸収線

- ・ 近年、Seyfert銀河のX線スペク トルで高電離物質からの吸収線 が見つかってきている
- Risaliti et al. (2005)では、 NGC1365でH-likeやHe-likeな Feの電離線が見つかっており、 これらがblue-shiftしていること が報告されている。
- Kriss et al. (1995) によると NGC4151ではUV-軟X線領域 で吸収線のblue-shiftが観測さ れており、高電離物質の吸収線 の検出が期待できる。

ライトカーブ

- NGC4151のライトカーブ。黒:XIS(4-9 keV)、赤:PIN(15-50 keV)、緑: (100-200 keV)。
- ・ 2006年の観測と比較して2011年の観測では大きく増光している。
- 2011-11-17の観測では1観測内での変動(XIS & PIN)でも受かっている。

XSTARを用いた吸収線エネルギーの見積もり

 電離度を変えた際の鉄輝線周りの吸収線の構造(5.5-7.5 keV)
 下図から電離度 § = 3, 4, 5の時はH & He-likeの吸収線が確認できる。
 § = 3, 4の時は周辺に他の吸収線が存在するため、これによりラインが幅を 持ち、エネルギーが低く見積もられる可能性がある。

XSTARを用いた吸収線エネルギーの見積もり

- 電離度を変えた際の鉄輝線周りの吸収線の構造
 前項の吸収線モデルを用いてXISのスペクトルシミュレーションを行い、
 得られたスペクトルをgaussianでフィッティングし、He-like Feのラインエネル
 ギーと幅を見積もり、比較した。
- ・ ξ=3.5の時はエネルギーは観測値一致するが、ライン幅がずれてしまう。
- 観測とモデルが合致しないため、現時点では吸収線のred-shiftを支持 But, XSTARを用いて作成した吸収線モデルは光度や吸収量に大きく依存す るためさらなるモデルの精査が必要。

ξ	エネルギー (keV)	幅 (eV)
観測	6.626 ^{+0.016} -0.015	17.4 ^{+33.5} -17.4
3.0	6.601 ^{+0.007} -0.006	96.0 ^{+9.5} -8.9
3.5	6.630 ^{+0.010} -0.009	82.9 ^{+17.5} -18.3
4.0	6.668 ^{+0.010} -0.010	33.1 ^{+25.6} -33.1

Wide Band Spectrum

- ・ 3観測で見られるラインのリスト。赤:輝線、青:吸収線。
- ・ 2006年と2011年の観測を比較すると2011年の観測では吸収線が目立つ。
- 2011年の観測では同種の吸収線が観測されているが、12月の観測の方が
 吸収線の強度が強くなる傾向がある。

	2006-12-18	2011-11-17	2011-12-18
Line 1 (keV)	1.335 ^{+0.007} -0.008	1.793 ^{+0.008} -0.011	1.794 ^{+0.003} -0.001
Equivalent Width (eV)	31.6 ^{+9.8} -7.9	18.6 ^{+3.7} -4.1	29.6 ^{+2.4} -2.7
Line 2 (keV)	1.589 ^{+0.012} -0.012	2.376 ^{+0.012} -0.009	2.386 ^{+0.010} -0.010
EW (eV)	38.7 ^{+8.0} -9.1	18.0 ^{+4.1} _{-4.3}	16.4 ^{+3.5} -2.8
Line 3 (keV)	1.765 ^{+0.006} -0.011	6.636 ^{+0.022} -0.020	6.622 ^{+0.010} -0.010
EW (eV)	43.2 ^{+10.1} _{-9.8}	16.6 ^{+3.6} -3.7	21.5 ^{+4.1} _{-4.0}

Wide Band Spectrum

	2006-12-18	2011-11-17	2011-12-18
Г	1.69 ^{+0.06} -0.06	1.73 ^{+0.02} _{-0.03}	1.70 ^{+0.02} _{-0.02}
nH (10 ²² cm ⁻²)	8.6 ^{+0.4} _{-0.4}	4.6 ^{+0.2} _{-0.2}	2.7 ^{+0.1} _{-0.1}
reflection factor	1.07 ^{+0.06} -0.06	0.46 ^{+0.02} _{-0.02}	0.47 ^{+0.02} _{-0.02}
R flux (ergs/cm²/s)	6.78 ^{+0.38} -0.38e-11	1.37 ^{+0.06} -0.06e-10	1.43 ^{+0.06} -0.06e-10
nH (10 ²² cm ⁻²)	26.8 ^{+4.3} -3.8	9.0 ^{+1.3} -1.2	6.4 ^{+0.7} _{-0.6}
CuvFact	0.50 ^{+0.03} -0.04	0.46 ^{+0.05} -0.04	0.46 ^{+0.03} _{-0.03}
cut off energy (keV)	91.4 ^{+30.0} -19.3	>212	250.9 ^{+76.4} -49.2
x ² /d.o.f	982/645	793/646	908/637

カットオフとFlux

「すざく」とINTEGRALの観測(黒:「すざく」2011-12-18観測)
 「すざく」データはcut-off power-law、INTEGRALデータはcomppsを使用。
 ⇒最大光度時、E_{cut}は同程度にもかかわらず、150 keV以上でfluxが異なる。
 cut-off power-law以上にsharpに折れ曲がる。

