X線天文衛星「すざく」による GeVガンマ線電波銀河 3C78,PKS0625-354の観測

徳田伸矢,深沢泰司,田中康之, 大野雅功,平木一至,伊藤亮介,山崎翔子,浦野剛志 (広島大学)

電波銀河

電波銀河・・・ジェットを斜め方向から見 ている天体

ジェットの内部構造を探る上で重要な 天体

最近になってガンマ線において、電波 銀河のジェットに伴う放射が報告 (Abdo et al. 2010)

フェルミ衛星1年カタログでは11個の電 波銀河がリストアップ (Abdo et al. 2010)

GeVガンマ線電波銀河

Fermiで検出されたGeVガンマ線電波銀河 全11個 z > 0.27 遠方のクエーサー部類 3つ z < 0.06 近傍ガンマ線電波銀河 8つ

<GeVガンマ線電波銀河を観測する意義> 多波長スペクトルを理解することによりジェットのパラメータが わかる ⇒ 他電波銀河と比較することによりジェットの描像の 理解へ(ジェットの多様性統一性)

多波長スペクトルを理解するうえで電波とGeVガンマ線の間を つなぐ領域にあたるX線は非常に重要

電波銀河3C78とPKS0625-354のX線放射を「すざく」を用いて初め て詳細に観測(約90 ks)し、その放射起源が円盤かジェットかを特 定することを目指す。

過去の観測結果 3C78 (NGC1218)

3C78 可視光画像(パロマ-天文台)

3C78(NGC1218)		・チャンドラでは点源とジェットが検出されてし ・ベき2-3のnowerlaw成分と
形状	SO/a	温度0.6 keV程度の熱的放射
活動性	Sy 1	■ 高エネルキー側に等価幅0.4-1.6 ■ keV程度の鉄ラインを伴った超過
赤方偏移	0.029	•BeppoSAX 20 ks, Chandra 5 ks ディスクト

(Trussoni et al. 1999)

「すざく」での観測結果 3C78 (NGC1218)

過去の観測結果 PKS0625-354

PKS0625-354		 ・チャンドラでは点源が検出されている。 ・べき2.5程度のpowerlaw
形状	不明	・鉄ラインは等価幅の上限値178 eV が得られている。
活動性	LINER	 ●時間変動の報告 ■是土統計の白いデークが知測時間
赤方偏移	0.055	- 取も就計の及いナータが観測時间 13 ks のXMM-Newton

「すざく」での観測結果 PKS0625-354

検出されていない。 ⇒ジェット起源(シンクロトロン)の放射である可能性

3C78とPKS0625-354の多波長スペクトル

Spectral Energy Distribution of 3C 78

 3C78
 PKS0625-354 両天体ともにTeVブレーザーHBLに 似ている(TeVガンマ線天体である可能性)

まとめ

- ・ 電波銀河3C78(NGC1218), PKS0625-354のX線放射を「すざく」を用いて初めて詳細に観測した。
- X線スペクトルは両天体ともにべき2.2-2.3のpowerlawで再現でき、鉄ラインは有意に検出されなかった。
- SEDは、one zone synchrotron + SSC modelで概ね再現する ことができた。
- 両天体ともにシンクロトロン放射のピークが高く、ガンマ線のべきがフラットであり、TeVガンマ線HBLに似ている。
 (TeVガンマ線望遠鏡での観測を検討中)

3C78のSEDプロット

Spectral Energy Distribution of 3C 78

時間平均スペクトルは、SSC モデルでよく再現できている。

磁場[G]	5.963 ± 0.002
ドップラーファクター	1.878 ± 0.004
放射領域サイズ[$ imes 10^4$ sec]	1.6 ± 0.2
電子スペクトルNorm [× 10 ⁵² erg/s/gamma]	1.9 ± 0.8
電子スペクトルのべき	2.36±0.04
電子スペクトルのカットオフエネルギー[×104]	7.2±0.7

3C78のSEDプロット(old)

磁場[G]	5.761 ± 0.002
ドップラーファクター	20293 ± 0.0005
放射領域サイズ[$ imes 10^4$ sec]	4.1±0.5
電子スペクトルNorm [× 10 ⁵³ erg/s/gamma]	2.0±0.6
電子スペクトルのべき	2.60 ± 0.03
電子スペクトルのカットオフエネルギー[×10 ⁵]	9±1

PKS0625-354のSEDプロット

Spectral Energy Distribution of PKS0625-354

時間平均スペクトルは、SSC モデルでよく再現できている。

磁場[G]	5.50542 ± 0.00004
ドップラーファクター	2.00000 ± 0.00001
放射領域サイズ[×10 ⁴ sec]	7.9±0.5
電子スペクトルNorm [× 10 ⁵² erg/s/gamma]	3.0 ± 0.3
電子スペクトルのべき	2.18±0.01
電子スペクトルのカットオフエネルギー[×104]	9.7±0.5

PKS0625-354のSEDプロット(old)

磁場[G]	26.7377 ± 0.0009
ドップラーファクター	2.1099 ± 0.0004
放射領域サイズ[$ imes 10^4$ sec]	2.7±0.1
電子スペクトルNorm [× 10 ⁵² erg/s/gamma]	3±1
電子スペクトルのべき	2.58±0.03
電子スペクトルのカットオフエネルギー[×104]	6.7±0.5

銀河の形状

	AGNの タイプ	赤方偏移 z	<i>Lx</i> [<i>ergs</i> ⁻¹]	母銀河	空間密度 [<i>h³Gpc⁻³</i>]	輝線幅
	Syfert1型 銀河	< 0.1	10 ⁴²⁻⁴⁴	渦巻	4×10^4	広+狭
電波の 弱いAGN	Syfert2型 銀河	< 0.1	10 ⁴²⁻⁴⁴	渦巻	1×10^4	狭
	RQ QSO	> 0.1	10^{44-47}	楕円、渦巻	100	広
電波の	電波銀河	< 0.3	10^{43-45}	楕円	$3 imes 10^3$	広/狭
	ブレーザー	< 0.3	10^{43-45}	楕円	$3 imes 10^3$	輝線なし
	RL QSO	> 0.1	10 ⁴⁴⁻⁴⁸	楕円、渦巻	3	広

Fermilこよる3C78(左), PKS0625-354(右) 周辺のガンマ線イメージ 緑はそれぞれの天体を中心とした 半径1度の円

見つかった8個の近傍ガンマ線電波銀河をすべてX線で 詳細に観測してX線放射起源を特定することは、ジェット の多様性統一性を明らかにするために重要