SGMAP: 広島大可視偏光サーベ 計画とCMB偏光観測への貢献

広島大学宇宙科学センター 川端弘治 吉田道利、植村誠、秋田谷洋、内海洋輔、森谷友由希、 観山正見、大杉節、ほかSGMAP協力グループ

SGMAP Search for the Galactic Magnetic-field by All-sky Polarimetric Survey

2m広視野タイプの望遠鏡+偏光観測装置・・・専用化 ~14等より明るい恒星数百万個の可視3バンド偏光サーベイ 初の全(半)天偏光サーベイ -> カタログ化

- ・ 天の川銀河の詳細な三次元磁場構造(円盤面、ハロー)
 - Gaia, JASMINE衛星による恒星の高精度距離計測との融合
 - 低周波の全天偏波マップやALMAの超精細偏光マッピングとも相補的
 - 星周域・SNRにおける磁場の圧縮・乱れ、外縁部の磁場、磁場の起源…
- 新しい偏光天体の発見(連星系、AGN等)
- 恒星の光球形状や活動性・質量放出の統計的研究
 SDSSのスペクトルカタログなどとの相乗効果
- 星間ダストの統計的性質
- 前景星間偏光の高精度見積もり(CMB、系外銀河・超新星)ほか
- 前景 星間吸収の高精度見積もり(R_vの位置依存性)

MAGNUM 2m telescope (Univ. of Tokyo)

Low cost, quick construction, and quick start of observation Dismantled and back to Japan In 2009

1. 1. 1

MAGNUM was operated atop Haleakara from 2000 to 2008

our observatory

Move to

サーベイ計画(50分角φでの案)

 (40秒×4露出)でV=14.0等に△p=0.2%、V=13.0等に△p=0.1%を達成 シーイング1.8秒角、スカイ18等/平方秒角、総合効率20%という余裕をみた見積もり
 1セットの観測(オーバーヘッド込み)に4.6分間、一晩8時間に100セット取得 実効視野 0.44平方度(視野50分角φで漏れなくカバーする場合)

1. 銀河面サーベイ

- |b|<30[°],l=0-220[°](12000平方度)
- 12000/0.44=27272露出でカバー、273晩で完了
- 晴天率0.333なら819晩=2.3年で完了
- . 中高銀緯サーベイ
 - b=+30-+90[°], l=0-360[°](10313平方度)
 - 10313/0.44=23439露出でカバー、235晩で完了
 - 晴天率0.333なら706晩=1.9年で完了

両サーベイは4年余りで完了 (並行して一部、時間変動天体サーベイも検討) 日本天文学会2013年秋季年会 超高精度CMB偏光全天観測時代の天文

競合する海外の計画

• SOUTH POL (PI: A. M. Magalhaes@Univ de Sao Paulo) 広視野0.84mロボット望遠鏡(CTIO)+EEV 9k9kCCD 視野 2.0deg²を一度にカバー

1.8m望遠鏡(CTIO)+10分角視野1k1k InSb array 近赤Hバンドのみ(より遠くまで見通す) 国のみのサーヘイ()取得

日本天文学会2013年秋季年会超高精度CMB偏光全天観測時代の天文学

遠方の星の多くは「星間吸収」・「星間偏光」 星間偏光の向きは、(距離積分した)銀河磁場の向きを表す 銀河磁場は一様成分とランダム成分の合成(Heiles 1987, 1996) ランダム成分のスケール長 ~100pc (diffuse) or 数百pc (all)

> 日本天文学会2013年秋季年会 超高精度CMB偏光全天観測時代の天文学 (Jones et al. 1992) 9

 → 偏光観測全般:前景偏光の見積もりには、より遠くまで、 高空間分解能、高距離分解能でのサーベイ観測が必須
 → 銀河磁場研究:星形成領域や超新星残骸周辺の
 ~10pcスケールの磁場構造から、銀河全体の磁場構造まで

Gaia/JASMINEにより10kpc/15等までの星の距離を 10%精度で測定(20等までカタログ化) SGMAPの偏光サーベイと付き合わせて天の川銀河全体の 磁場構造を精密に決定

日本天文学会2013年秋季年会 超高精度CMB偏光全天観測時代の天文学

CMBのBモード偏光(原始重力波~インフレーションの証拠)は、前景の星間偏光(シンクロトロン放射+星間ダスト)に比べて弱い

 ・ 観測値に対し、精度の良い差し引き/マスキングが必要

 (e.g., Bouchet+ 1999; Kogut & Hinshaw 2000; Tegmark+ 2000)

日本天文学会2013年秋季年会超高精度CMB偏光全天観測時代の天文学

高精度CMB偏光観測への寄与2

WMAP論文(3yr-WMAP: Polarization Analysis, Page+ 2007, ApJS, 170)

§ 4 The Foreground Emission Model

§4.1 WMAPの偏光データを説明し得る天の川銀河のマイクロ波偏光モデル

§ 4.1.2 Starlight Polarization and Polarized Dust Emission

d>500pc & |b|>10°(~ダスト円盤層の外側)にある 1578個 の星をサンプル 偏光の向き(PA)を、9.2°FWHM(円内に3個程度)のガウシアン窓でスムージング (簡単なモデルの割に)可視偏光角とWMAP Kバンド偏波角はよく相関している

可視偏光カタログの偏光角(1578星)とWMAP Kバンド(23GHz)偏光角との相関 オリオン領域などで反相関を示すものの、 全体として良く一致している(典型的に<20°) Fig. 11 in Page+ (2007)

16

※平行とは、可視偏光から予想される磁場の向きと 偏波から予想される磁場の向きが平行という意味

日本天文学会2013年秋季年会 超高精度CMB偏光全天観測時代の天文学

SGMAP まとめ

広島大 可視3バンド偏光サーベイ計画 MAGNUM望遠鏡の広視野化+専用装置 4年余りで北天+αをカバー 現力タログの100倍以上の個数に バンド数も複数に(偏光機構のサイエンス) 天の川銀河磁場の構造、他多彩なサイエンス CMB偏光の高精度補正にも寄与できる、かも

全天の星の数					1000立方パーセクの空間中の星の数								
東現等級	星 数	星比	星明	M	. 0	В	A	F	G		ĸ	М	
-1	2	_	1.5		7 2×10-	5×10-	3×10-7	3×10-	3×	10-7	12/10-7	1×10-	
-1	2	(35)	1.2	, _	5 1×10	2.5×10	1×10-6	6×10-	8×	10-6	4×10-6	4×10-	
1	12	(1 7)	1.2	, -	4 3×10-	1.6×10-	1×10-*	1.6×10-	2.5×	10-5	1.3×10-5	1.3×10-	
2	67	(5.6)	2.6		3 1×10-	5×10-	5×10-6	8×10-	8×	10-5	1×10-4	6×10	
3	190	2.8	2.0		$2 1 \times 10^{-1}$	2.5×10-	8×10-	2×10-	3×	10-4	6×10-4	4×10	
4	710	3.7	4.3	3		2×10-	2×10-2	2×10-	8×	10-3	2.5×10-2	1×10	
5	2000	2.8	4.8	3	1	3×10-	1×10-1	3×10-	2 3×	10-2	1.2×10-1	1×10-	
6	5600	2.8	5.4		2	2×10-	2×10-1	1.6×10-	5×	10-2	1.1×10^{-1}		
7	1.6×104	2.8	6.1	1	3	1×10-	8×10-2	7×10-	1.5×	10-1	1×10-1		
8	4.3×104	2.7	6.5	5	5	1	3×10 -	6×10-	12	10	3×10-1		
9	1.2×10 ⁵	2.8	7.3	2	6	1		2×10-	· 1.	5	1.5	1×10-	
10	3.5×10 ⁵	3.0	8.4	4	7	1		1×10-	1 8×	10-1	3	1×10-	
11	8.7×10 ⁶	2.5	8.4	4	8			1×10-	4×	10-1	2.5	1	
12	2.3×10 ⁶	2.7	9.0	0 1	9	1×10-			2×	10	1.5 4 × 10 ⁻¹	3	
13	5.6×10 ⁶	2.4	8.6	5 1	ĩ	1×10-	3×10-2	1×10-	z	- 3	2×10-1	9	
14	1.3×107	2.4	8.2	2 1	2	2×10-	4×10-1	1×10-	1		1×10-1	1×10	
15	3.2×107	2.4	7.9	9 1	3	4×10-	6×10-1	3×10-	1×	10-1	4×10-1	1×10	
16	6.9×107	2.1	6.3	7 1	5	15	2	1	1 0	5	12	8	
17	1.4×10*	2.0	5.3	3 1	6	3	5	3	3	~	1.0	6	
-18	2.8×10^{8}	2.0	4.3	2			1						
19	4.2×10 ⁸	1.5	2.5	5									
20	7.1×10*	1.7	1.3	7	90	測されて見のスペクトル刑の頼守							
21	1.3×10°	1.8	1.3	2	説刺される生の人ペクトル型の頻度								
>21.5	-	-	1.5	5 7	ペクトル雪	a o	В	A	F	G	ĸ	M	
合計	2.9×10 ⁹	-	118	1	星の数の%	1	10	22	19	14	31	3	
				1平方	「度あた	りに観	則される	る星の萎	攵				
写真	銀緯=0	±5		±10° ±20°		±30*	±40*	±50°	±60°		±90°	平均	
5	0.052	0.	.044	0.037	0.028	0.020	0.017	0.016	0.015		0.013	0.023	
10	9.3	7.	.6	6.3	4.6	3.5	2.9	2.5	2.2		1.9	4.2	
15	1200	1000		760	450	290	200 160		130		93	420	
20 5	50000	50000		0000	16000	6000	4000	2500	2000		1300	15000	

(広域)銀河磁場の観測例 電波域でのシンクロトロン放射の偏波マッピング

M51 4.86GHz (VLA + Effelsberg100m) (Fletcher+ 2011)

低周波だけでなく、FRの影響を受けにくい高周波(>5GHz)でも全天 偏波サーベイが行われてきている。 しかし距離情報は得にくい。

系外銀河では大局磁場は捕え やすいが、分解能が不足

23

 SOUTH POL (ブラジルのグループ PI: A. M. Magalhaes) 広視野0.84mロボット望遠鏡(CTIO)+ EEV 9k9kCCD 視野2.0deg?を一度にカバー(但し、1 broad band)
 2013年に望遠鏡設置予定 偏光ユニット: 半波長板+方解石プリズム 南天δ<-15°を1バンド∠p~0.1%でサーベイ

Table 1: Summary of the performance of the T80 design

Performances of design

Aperture	0.840 m diameter
Plate scale	55.56 arcsec/mm = 0.83arcsec/15μm
Focal length	3712 mm
Field of view	110 mm (1.7°) with optimized image quality
	155 nm (2.4°) with limited performances
Image Quality	50% EE = 5 μ m / 0.28 arcsec (diameter)
	$80\% EE = 13 \mu m / 0.72 \operatorname{arcsec} (diameter)$
Distortion	0.6%

Magalhaes (2012) ESO Surveys

SGMAPサイエンスミニWSを開催しました

2013年7月17-18日 (広島大)

長波長電波観測で探る天の川銀河の電離物質 --- 赤堀 卓也 (シドニー大) 大学VLBI連携及び日韓VLBI観測網の偏波観測モードの現状について --- 新沼 浩太郎 (山口大) CMB偏光観測 ---- 羽澄 昌史(KEK) 可視域での星間偏光データからの星間構造 ---- 松村 雅文(香川大) 偏光/多色掃天についての考察 --- 佐藤 修二 (名古屋大) 位置天文観測衛星計画について ~ GaiaとJASMINE~ --- 郷田 直輝 (国立天文台) Synergy with SGMAP and current and future high-energy missions --- 田中 康之 (広島大)

http://1601-031.a.hiroshima-u.ac.jp/sgmap/workshop/201307/miniws.html