硬X線偏光検出器
PoGOLiteの読み出し回路の改良

大橋礼恵, 高橋弘充, 河野貴文, 水野恒史,
深沢泰司(広島大学), 田島宏康(名古屋大学),
他PoGOLiteチーム
X線・ガンマ線の偏光観測

X線、ガンマ線の偏光が持つ情報
（反射、シンクロトロン放射に伴う磁場）
→ 降着円盤の構造、パルサーの放射機構
高エネルギー天体現象の研究において重要

過去のX線、ガンマ線の偏光検出
Gamma–ray burst
Crab nebula: 2.6, 5.2 keV, 150 keV以上
Cyg X-1: 130 keV以上

OSO-8の結果以外は、検出レベルは3σしない

硬X線帯域（数10 keV）の偏光は未検出
PoGOLite
(Polarized Gamma-ray Observer-Light version)
気球によって、かに星雲から25-120 keVで偏光検出を狙うコンプトン散乱を利用した偏光観測

前回フライト：2013年7月（～2週間、スウェーデン→ロシア）
次回フライト：2016年夏季
2013年に約2週間のフライトを行い、数回のCrab観測を実施した。PoGOLiteのCrab観測データからCrab pulseを検出し、ただし、温度上昇によってCrab観測時間の1/3で検出器をOFFする場合があった。また、BGが信号より大きく、その主成分は中性子であった。
読み出し回路（FADCボード）の改良

- 温度上昇を抑える
 (1) 消費電力の節約
 FPGAのアップグレードによる消費電力低下
 (FPGA = Field Programmable Gate Array)
 (2) 入力チャンネル数: 8ch → 16ch/枚
 (ボードの枚数: 12 → 6枚)
 → スペースに余裕、排熱の向上

- ADCのサンプリングレートの向上
 37.5MHz → 100MHz
 → 波形弁別能力の向上
 (→中性子/ガンマ線の波形弁別)
FADCボードのコンポーネント

(CSA = Charge Sensitive Amplifier)

PMT信号 → CSA → Differential buffer → ADC 8ch → FPGA

FADC Board

・プリアンプ後の波形データをADCでサンプリングして保存
・ノイズ対策のため差動バッファ
・ADC：100MSPS、2Vp-p、差動入出力

・ダイノード（すざくHXDにならいこれまで使用）、アノード（信号がダイノードより高いのでノイズに強くなる）の両信号に対応させる

・UserFPGAとSpW通信用FPGAの機能を1つのFPGAにまとめる
FADCボードの開発スケジュール

2014/7 ~ 2015/2
◆ デジタル部(ADC)の改良
 ・ADC: 100MSPS
 ・テスト基板で10nsを確認

2015/3 ~ /8
◆ アナログ回路(CSA, Differential buffer)の改良
 ・Ltspiceでシミュレーション
 ・テスト基板で生信号を確認

2015/8~ ◆ 実際の基板を製作・テスト

以下、アナログ回路と実機でのテストについて述べる
アナログ回路パラメータの決定

◆ プリアンプのゲイン
 • よりゲインが高いアノードを使用する可能性
 • Slowシンチレータをパッシブなコリメータにし、反射材をESRに変えることで、光量を上げる → 元の半分のゲインに設定

◆ プリアンプの時定数
 • BGO（時定数: 300ns）、立ち上がり：1~1.5us → 時定数が短すぎると
 BGO信号の波高値が下がりvetoの効率が下がる
 • 長すぎるとパイルアップ（現状の時定数: 2.2us）
 フライト中のイベントレートは〜12kHzとわかる

現状の時定数でのパイルアップ確率は許容範囲内であると判断

◆ 出力遅延を無くすため、差動出力のオペアンプを変更
ボードの動作検証 (ADC値の読み出し)

プリアンプで積分による波形のナマリは小さい
ADCが100MHzでサンプリングを行っていることを確認

消費電力 旧 : 1.0A x 12枚、 新 : 1.5A x 6枚 → より小さい電力
まとめ

◆ PoGOLiteの読み出し回路の改良
 ・消費電力を下げて温度上昇を抑え、ボードの枚数を減らすことで排熱の効率を上げたFADCボードを作製

 ・サンプリングレートは、37.5MHz → 100MHzに向上させ、今後、中性子/ガンマ線の波形弁別の確率上昇を確認する

 ・PMT信号の Anode, Dynode どちらにも対応

◆ PoGOLite 全体
 ・検出器の改良中
 ・次回フライト: 2016年夏季