

大野 雅功 (広島大学)

 河野貴文,枝廣育実,白川裕章,大橋礼恵,岡田千穂,幅田翔,勝田隼一郎, 田中康之,高橋弘充,水野恒史,深沢泰司(広島大)、村上浩章,小林翔悟, 三宅克馬,小野光,室田優紀,中澤知洋,牧島一夫(東京大学),三村健人, 片岡淳(早稲田理工),一戸悠人,内田悠介,桂川美穂,米田浩基,武田伸一 郎,佐藤悟朗,佐藤理江、川原田円,原山淳,小高浩和,林克洋,太田方之, 渡辺伸,国分紀秀,高橋忠幸(ISAS/JAXA),木下将臣,山岡和貴, 田島宏康(名大/STEL),谷津陽一(東工大),内山秀樹(静岡大), 斉藤新也(立教大),湯浅孝行(RIKEN), 他HXI/SGDチーム 天文学会 2015 秋季年会

様々な形状、大きさのBGOの組み合わせ、個別に読み出し → 複雑なガンマ線応答

15.9.11

Current status of HXI/SGD

フライト品の動作、性能検証のフェーズはほぼ完了。次は実際の観測で必要となる 応答関数を実測データを反映させて構築する必要がある。

BGOシールドのガンマ線応答: 巨大で複雑な構造中でのコンプトン散乱 → Geant4ベースのモンテカルロシミュレーションで再現する

BGOシールド用のモンテカルロシミュレーターの開発

▶実測データ、固有のガンマ線応答の取り込み
 ▶実測との比較によるシミュレーターの検証
 ▶全天モニタ機能の検証

Input parameter (1) 光量の位置依存性

- ・台形構造を持つ HXI "top" 結晶は最終出力光量が、入射ガンマ線位置に 強く依存する
- ・シンチレーション光の ray-tracing でもある程度再現できるが、 シミュレータの簡略化のために、実測した光量の位置依存性マップを取り込む

Input parameter (1) 光量の位置依存性

- ・台形構造を持つ HXI "top" 結晶は最終出力光量が、入射ガンマ線位置に 強く依存する
- ・シンチレーション光の ray-tracing でもある程度再現できるが、 シミュレータの簡略化のために、実測した光量の位置依存性マップを取り込む

Input parameter

(2)エネルギー分解能、エネルギー較正、しきい値

・実測でしか測定できないパラメータ。フライト品を用いた
 地上較正試験(-20℃)で測定
 ・様々な放射線源 (⁵⁷Co, ¹³⁷Cs, ²²Na)により、ピーク、分解能を計測.
 ・バックグラウンドデータからエネルギーしきい値を評価.

15.9.11

HXI/SGD ともに、すべてのBGOユニットについて、エネルギー較正関数、 エネルギー分解能、しきい値の取得に成功

まとめ

ASTRO-H 衛星搭載 HXI/SGD における BGO アクティブシールドの 応答関数をGeant4ベースのシミュレータにより構築している。

- ◆実測データ(エネルギー分解能、しきい値、光量の位置依存性など) を、フライト品を用いた地上較正試験の結果を取りこむ枠組みは 完成した。光電吸収ピーク付近は10%程度の精度で再現できた。
- ◆衛星を含めたシミュレーターに反映させることで、SGDを用いた 全天観測シミュレーションをより現実的なパラメータで実施可能。

◇今後は、さらにシミュレーターの機能拡張、精度向上を行い、
1)トリガー効率を取り入れた反同時計数機能の再現
2)全天観測におけるスペクトルシミュレーション
を実施していく予定

The ASTRO-H Mission

ASTRO-H is Japanese 6th series of X-ray observatory. It is scheduled to be launched in the end of JFY 2015 with an H-II A rocket.

Total length : 14 m Weight : 2.7 t Largest scale satellite for Japan 15.9.11

Scientific instruments ♦ Soft X-ray Spectrometer (SXS) Soft X-ray telescope + X-ray calolimetor ♦Soft X-ray Imager (SXI) Soft X-ray telescope + CCD Hard X-ray Imager (HXI) Hard X-ray telescope + hard X-ray imager Soft Gamma-ray Detector (SGD) Narrow field-of-view Compton camera

The most sensitive observation in high energy band 5-80 keV : Hard X-ray Imager (HXI) 50-600 keV : Soft Gamma-ray Detector (SGD)

Reducing background is one of important issue Large/thick $Bi_4Ge_3O_{12}$ crystal scintillators surround the main detectors of HXI/SGD \rightarrow BGO active shields

→ multiple Compton scattering in complicate detector shape

Geant4-based Monte-Carlo approach is useful to calculate the gamma-ray response of BGO active shields

Gamma-ray response specific to the BGO active shield should be implemented

- Light correction efficiency depending on the photon interaction position.
- Temperature dependency of BGO light yield and APD gain.
- trigger efficiency around threshold due to noise jitter.

We have to develop the framework of the simulator and verify it using various calibration results.

Input parameter (2) Energy resolution and gain curve

Example of various RI spectra of HXI (9 BGO units) (Background-included)

Input parameter (2) Energy resolution and gain curve

Example of various resulting gain curve and energy resolution for a unit of HXI

Gain curve

Using background measurement data, we can evaluate the energy threshold for all BGO units of HXI and SGD

These threshold value are also implemented to the simulator

Angular response

SGD shield can be used as the all-sky monitor Gamma-ray response depending on the incident photon direction should be reproduced by our simulator

Measurement has been performed by irradiation of ²²Na at room temperature (we can only see 1275 keV photo-peak)

Move ²²Na RI source to various positions (15degree/step)

1275 keV photo-peak area count at each RI position is measured

- We can see simple angular response for almost incident position
- But there are some unexpected count increases (phi=150, phi=200).
- These angular response is also checked by our simulator

Verification of the simulator (simple case: SGD)

C2-201(CC1 -z)

B-203(CC2 +x)

G1-201(CC1 +z)

B-201(CC1 +x)

B-202(CC1 -x)

Simulation spectra well reproduce gain and energy resolution, but Compton scattering component is not enough obviously. Surrounding structures also should be included to verify our simulator.

Verification of the simulator (simple case: SGD)

Simulation spectra well reproduce gain and energy resolution, but Compton scattering component is not enough obviously. Surrounding structures also should be included to verify our simulator.

Verification of the simulator (simple case: SGD)

Experimental room, Thermal Chamber, Housing structure ..etc Added to the geometry

We have successfully reproduce the experimental spectra including Compton scattering component.

 \rightarrow our simulator works well for the simple case

We have successfully reproduce the experimental spectra including Compton scattering component.

 \rightarrow confirm that our simulator works well for the simple case

Verification of the simulator (angular response: SGD)

Overall structure including unexpected increase of counts around Phi=150, and phi=200 degree can be reproduced. Fine tuning of the geometry may be required for further comparison.

Input parameter (3) trigger efficiency around threshold

- Trigger generation timing could be changed for the low-pulse height around the threshold due to noise "jitter".
- The anti-coincidence latch efficiency of the main detector decreases at a certain rate in such low-level signals.
- We have to consider this effect to reproduce the background rejection function more accurately.

We implement this effect as the probability function in the trigger generation module.