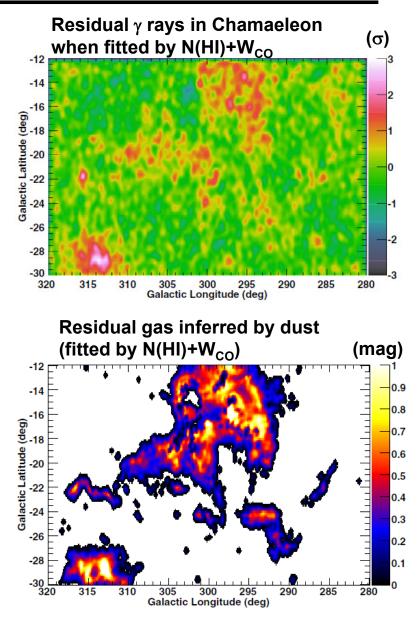

Sep. 12th, 2017@ASJ meeting in Hokkaido

T. Mizuno (Hiroshima Univ.) on behalf of the Fermi-LAT Collaboration

(Mizuno+16, ApJ 833, 278)

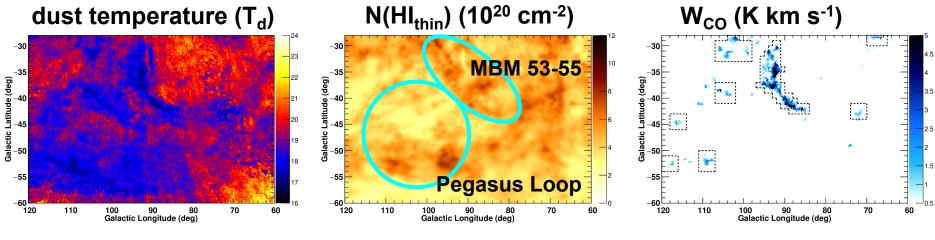
フェルミ衛星によるMBM 53-55分子雲・Pegasus Loop領域の星間ガスと 宇宙線の研究(2) Sep. 12th, 2017@北海道大学(日本 天文学会) 水野恒史 (広島大学) on behalf of the Fermi-LAT Collaboration

(Mizuno+16, ApJ 833, 278)



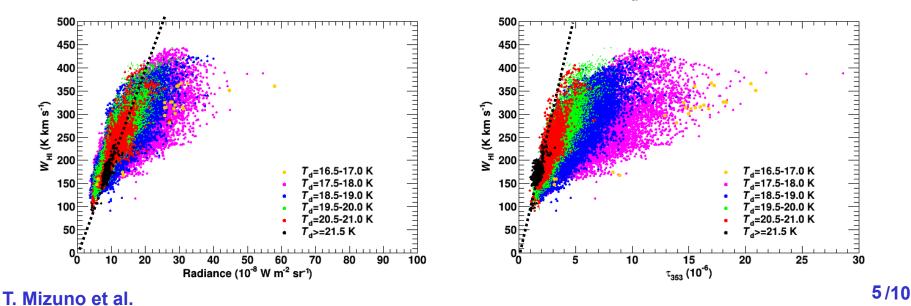
 A significant amount of ISM (interstellar medium) gas not traced by standard 21 cm and 2.6 mm radio lines has been recognized recently

Chamaeleon Molecular Cloud: $M_{H2,CO} \sim 5x10^3 M_{solar}$ $M_{DG} \sim 2x10^4 M_{solar}$


Ackermann+12, ApJ 755, 22 (CA: Hayashi, TM)

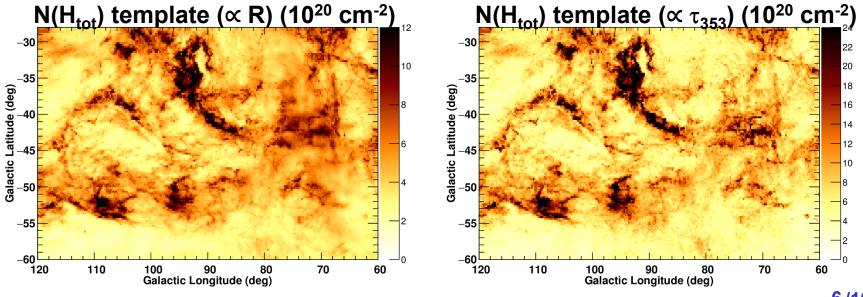
 These "dark gas"(DG) can be traced by infrared (IR) and γ-ray observations, but <u>the procedure</u> <u>has not been established yet</u>

- The procedure to convert dust distribution into N(H_{tot}) has not been established yet, giving uncertainty in dark gas distribution
- Here we present the study of MBM53-55 and the Pegasus loop by using γ-rays as a robust tracer of N(H_{tot})
 - Under the assumption of uniform cosmic-ray (CR) density, we can trace N(H_{tot}) by γ -rays since I_{γ} \propto N(H_{tot})U_{CR}

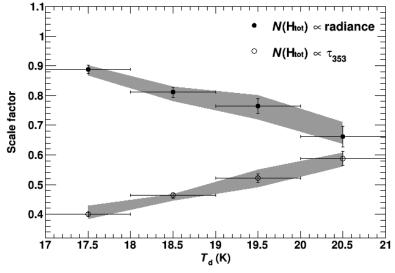


T. Mizuno et al.

- Dust is mixed with gas and has been used as a tracer of N(H_{tot})
 - But what kind of quantity should we use?
- We examined correlations btw. W_{HI} and two dust tracers (radiance (R) and opacity at 353 GHz (τ₃₅₃)) (see also Fukui+14,15, Planck Collab. 2014)
 - Two tracers show different and $\underline{T}_{\underline{d}}$ -dependent correlations with W_{HI}

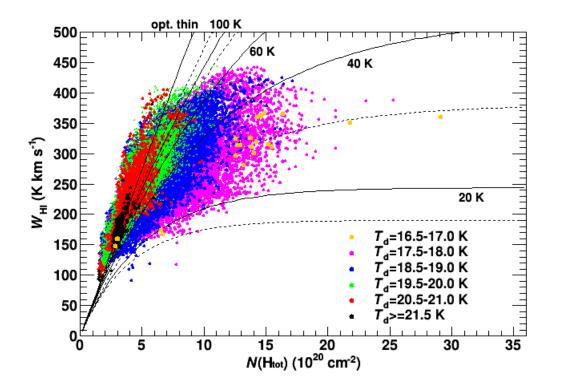

(Areas with W_{co}>1.1 K km/s are masked) (Lines show best-fit linear relations in T_d>21.5 K)

- Dust is mixed with gas and has been used as a tracer of N(H_{tot})
 - But what kind of quantity should we use?
- We examined correlations btw. W_{HI} and two dust tracers (radiance (R) and opacity at 353 GHz (τ₃₅₃)) (see also Fukui+14,15, Planck Collab. 2014)
 - Two tracers show different and T_d-dependent correlations with W_{HI}


=> Different contrast in N(H_{tot}) template maps (\propto R, τ_{353}). The map \propto R gives better fit to γ -ray data

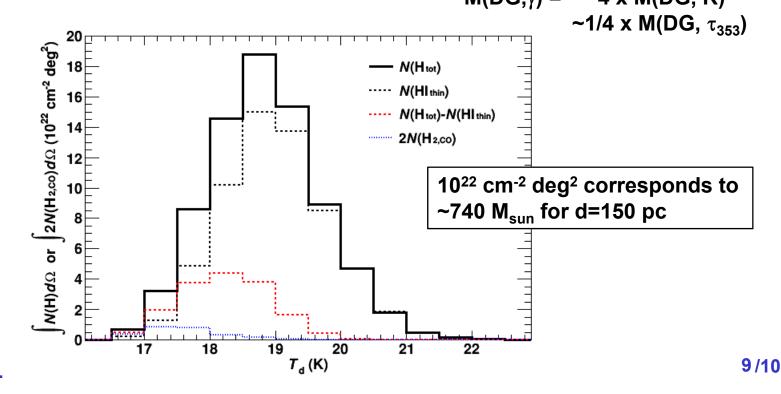
T. Mizuno et al.

- Even though R-based N(H_{tot}) is preferred by γ-ray data, true N(H_{tot}) could be appreciably different
- Therefore we split N(H_{tot}) template map into four based on T_d and fit γ-ray data with scaling factors freely varying individually
 - Scale factors should not depend on T_d if N(H_{tot}) < D (R or τ_{353}) and U_{CR} is uniform
- Fit improves significantly but scale factors depends on T_d
 - Negative correlation with R implies <u>underestimate of N(H_{tot}) in low T_d</u>



We propose to use γ -ray data to compensate for the dependence

$$N(H_{tot,mod}) = \left(1 + 0.1 \frac{20.5 \text{ K} - T_d}{1 \text{ K}}\right) N(H_{tot,R})$$



- The correlation between W_{HI} and the "corrected" N(H_{tot}) map
 - Scatter due to dark gas (DG). <u>T_s<100 K is inferred</u> in the scenario that optically thick HI dominates

- Integral of gas column density (∝ M_{gas}) as a function of T_d for N(H_{tot}), N(HI_{thin}), N(H_{tot})-N(HI_{thin})(~N(H) for dark gas) and 2N(H_{2,CO})
 - M_{DG} is ~25% of M_{HI,thin} and ~ 5 x M_{H2,CO}, <u>larger than model predictions</u> of CO-dark H₂ scenario (NB: different physical conditions)
 - M_{DG} differs by a factor of ~4 if we use only R (or τ_{353}); <u>The correction</u> <u>based on γ-ray data is crucial</u> M(DG,γ) = ~ 4 x M(DG, R)

- An accurate estimate of ISM densities is important
- Diffuse GeV γ rays are a powerful probe to study the ISM (and CRs)
- We present a joint Planck & Fermi-LAT study of MBM 53-55 clouds and the Pegasus loop for the first time
 - We propose to use γ rays as a robust tracer of N(H_{tot}), and obtained the ISM (and CR) properties
 - We obtained physical quantities of the ISM and CRs (e.g., T_s for HI dominant scenario, mass of dark gas)
- Systematic study of other high-latitude regions is important and underway

Thank you for your Attention