

Study of the Cosmic Rays and Interstellar Medium in Local HI Clouds using Fermi-LAT Gamma-Ray Observations

Sep. 21, 2018@ASJ meeting in Himeji
Tsunefumi Mizuno (Hiroshima Univ.)
On behalf of the Fermi-LAT collaboration

フェルミ衛星LAT検出器 による近傍原子雲領域の 星間ガス・宇宙線の研究

2018年9月21日@日本天文学会 (兵庫県立大学)

水野 恒史(広島大学)ほか Fermi-LAT Collaboration

Motivation: Dark Gas

 Significant amount of ISM gas not well traced by standard 21 cm and 2.6 mm lines (Grenier+05)

Chamaeleon Molecular Cloud: $M_{H2,CO} \sim 5 \times 10^3 \ M_{solar}$ $M_{DG} \sim 2 \times 10^4 \ M_{solar}$

- This "dark gas" (DG) usually traced by dust, but the procedure not established
- Also affect the study of cosmic rays (CRs) because $I_{\gamma} \propto N_{\rm H} U_{\rm CR}$

Objectives of the Study

- Accurate estimate of the ISM gas densities is crucial to understand the ISM and Galactic CRs
- Procedure to trace the "dark gas" (gas not properly traced by HI and CO line surveys (Grenier+05)) not established yet => detailed study of nearby clouds

Fitting Procedure

 Uniform CR density (assumption testable by energy dependence) -> the γ-ray intensity can be modeled as a <u>linear combination of templates</u>

We employ "P305" data to reduce residual background toward Ecliptic/Equator while keeping high photon statistics (public data w/ stringent cut also OK)

W_{HI}-Dust Relation (North)

- Correlation btw. W_{HI} and dust emission D_{em} (R or τ_{353})
- Dust temperature (T_d) dependence is seen in W_{HI} - τ_{353} correlation
- Linear curves that follow trends in high T_d area are used to construct N_H model maps assuming N_H∝D_{em}

N_H Model Maps and Residuals (North)

 We prepared N_H model maps (∝ W_{HI} or D_{em}) and used them in a fit of γ-ray data -> R gives the best fit.

W_{HI}-Dust Relation (South)

- Correlation between W_{HI} and D_{em} (R or τ_{353})
- Weak T_d dependence, non-linear W_{HI}-D_{em} relations (N_H/D_{em} and/or N_H/N_{HI} not uniform)
- Linear curves that follow trends in (high T_d & low W_{HI}) area are used to construct N_H model maps assuming $N_H \propto D_{em}$

N_H Model Maps and Residuals (South)

 We prepared N_H model maps (∝ W_{HI} or D_{em}) and used them in a fit of γ-ray data -> R gives the best fit.

Summary & Future Prospect

- We have been studying CRs and ISM in mid-latitude region of the 3rd quadrant.
 - Establish the procedure to convert D_{em} to N_H , constrain CRs and ISM gas properties
 - Employ P305 data to suppress residual background
- ISM gas tracer investigation (W_{HI}-D_{em} relationship):
 - T_d dependence in North, D_{em} dependence in South
- γ -ray data analysis:
 - R gives best fit (North and South)
- Now evaluating T_d/D_{em} dependence with systematic uncertainties into account to discuss CR/ISM properties

Thank you for your Attention

- Abdo+09, ApJ 703, 1249
- Abdo+10, Science 327, 1103
- Ackermann+13, Science 339, 807
- Grenier+05, Science 307, 1292
- Karberla+05, A&A 440, 775
- HI4PI Collaboration 2016, A&A 594, 116
- Mizuno+16, ApJ 833, 278
- Mori09, Astropart. Phys. 31, 341
- Planck Collaboration 2014, A&A 571, 13 (Planck 2013 Results XIII)