

森下皓暁, 深沢泰司, 高橋弘充, 丹羽怜太(広島大学)

軟ガンマ線観測

この帯域では、目標天体の光子以外からくるバックグラウンドが多い。

研究の背景・目的

プラスチックシンチレータ+放射線劣化したMPPCに 対して、エネルギー閾値を下げることを検討する。

なぜプラスチックシンチレータなのか・・・

MPPC

○小型衛星での打ち上げの場合、BGOだと衛星重量オーバー
 ○無機シンチレータに比べて減衰時間が100倍程度速い
 →・ガンマ線の高速計数、高計数率測定に使用
 ・信号が細くて高く、ノイズに対して信号を拾いやすい可能性

ーMPPCの放射線劣化による影響ー

O放射線劣化した&していないMPPCを用いた測定

ーエネルギー閾値をどう下げるかー

- (1) 波形増幅アンプのみでの測定
- (2) 同時刻イベントのみの測定
- (3) 低温環境での測定

閾値を下げるには(波形増幅アンプ) 実験結果(1)

閾値を下げるには(同時刻イベント測定) 実験結果(2)

実験結果(2) 閾値を下げるには(同時刻イベント測定)

実験結果(3) 閾値を下げるには(低温環境で測定)

②¹³⁷Cs, 波形増幅器での常温と低温測定

・1 krad 陽子照射したMPPC ・1cm角立方体シンチレータ

まとめ

3つの実験により、エネルギー閾値が下がることを確認した。 (1)波形増幅アンプのみの測定・・・65% (2)同期測定(82%)+スペクトルの足し合わせ(86%)・・・70% (3)低温での測定・・・33% →これらを掛け合わせると、理想的には、15%程度まで下げられる。

(2)最適なCoincidence幅:8ns (1cm角プラスチックシンチレータ) 同時刻イベントのみの測定では、スペクトルの波高値が違っていても、 信号をあまり失わず、またエネルギー閾値も下げられる。

MPPCを増やすことで、さらなる閾値低減も見込める。

Backup Slides

Appendix. コンプトンエッジの決め方

Ⅰ.通常MPPCで、光電吸収ピーク(⁵⁷Co, ¹⁰⁹Cd, ²⁴¹Am)から較正直線を作成
 Ⅱ.それをもとに、¹³⁷Cs, ²²Na, ¹³³Baのコンプトンエッジの位置を決定
 Ⅲ.この図を拡大して擬似的にエネルギー分解能を悪くし、重ね合わせる

使用した回路とパラメータ

F	RI	<i>E_{abs}</i> (keV)	E_{edge} (keV)
137	Ċs	662	477
21	Na	511	341
133	Ва	356	196
57	Со	122	
109	Cd	88	
241	Am	59.5	
€134 +			+
왕 명132			+
hresh 130-	+		+
ក្នុ ភ្លំ128		+	
편 표 126		* *+ +* ++	
40) 60) 80 100 12 Long Gate (ns	20 140 160
Long Gateとエネルギー閾値			

11/9

③通常MPPC

実験結果 波高値が異なる場合の同時イベント測定

・1 krad 陽子照射したMPPC ・1cm角立方体シンチレータ

 $(3)^{137}Cs$, Coincidence width : 8 ns

波高値10:1での測定(左図は1の方を表示)

1 krad 陽子照射したMPPC 1 cm角立方体シンチレータ

 $(3)^{57}$ *co*, Coincidence width : 8 ns

同期なしでは検出できなかったところに、 ⁵⁷Coの光電吸収ピークを確認

14/9

実験結果(3) 閾値を下げるには(低温環境で測定)

-20°Cで波形増幅アンプを用いて測定した¹³⁷Cs (赤)、²²Na (青)、¹³³Ba (黒)、 ⁵⁷Co (マゼンタ)、²⁴¹Am (緑)、¹⁰⁹Cd (シアン)のエネルギースペクトル。

より低エネルギーの光電吸収ピークも確認

