

Galactic Cosmic-Rays Observed by Fermi-LAT

Tsunefumi Mizuno Hiroshima Univ. on behalf of the Fermi-LAT Collaboration

JPS 2009 Autumn Meeting September 11, 2009, Kobe, Japan

- 1. Cosmic-ray overview and Fermi Gammaray Space Telescope
- 2. Cosmic-ray electrons seen by Fermi-LAT (direct measurement of CRs)
- Galactic CRs revealed by diffuse γ-ray emission observed by Fermi-LAT (CRs in distant location)

Fermi_CR_2009Sep.ppt

Introduction: Cosmic-Rays and the Fermi Gamma-ray Space Telescope

- Discovered by V. Hess in 1912
- Globally power-law spectrum with some structures (knee and ankle)
 - hint of the origin
 - E<E_{knee} are (probably) Galactic origin
- Composition:
 - > e⁻ ~ (1/100 1/1000) x p, e⁺ ~ (1/10) x e⁻
- Large energy density: ~1 eV cm⁻³
 - \succ comparable to U_B and U_{rad}
- Studied by <u>direct</u> and <u>indirect</u> measurements

Introduction (1): What Can We Learn from HE e⁻/e⁺ (and p/p)

• Inclusive spectra: e⁻ + e⁺

> Electrons, unlike protons, lose energy rapidly by Synchrotron and Inverse Compton: at very high energy they probe the nearby sources

• Charge composition: $e^{+}/(e^{-} + e^{+})$ and $\overline{p}/(\overline{p} + p)$ ratios

 \succ e⁺ and \overline{p} are produced by the interactions of high-energy cosmic rays with the interstellar matter (secondary production) There might be signals from <u>additional (astrophysical or exotic)</u> sources

 Different measurements provide complementary information of the origin, acceleration and propagation of cosmic rays

> All available data must be interpreted in a coherent scenario

Study <u>nearby sources</u> (astrophysical or exotic)

Introduction (2): Fermi_CR_2009Sep.ppt Fermi_CR_2009Sep.ppt Fermi_CR_2009Sep.ppt

HE γ -rays are produced via interactions between Galactic cosmic-rays (CRs) and the interstellar medium (or interstellar radiation field)

(Interstellar space) (CR Accelerator) (Observer) ISM 160 SNR X.v 140 **RX J1713-3946** Chandra, Suzaku, **Radio telescopes** B HESS ISRF diffusion energy losses <mark>02</mark>5 reacceleration Pulsar, convection μ-QSO etc. ACTs, Fermi

A powerful probe to study CRs in <u>distant locations</u>

Fermi_CR_2009Sep.ppt

Fermi Launch

Gamma-ray Space Telescope

Fermi Gamma-ray Space Telescope

LAT

Two instruments:

Large Area Telescope (LAT)
 20 MeV - >300 GeV

• Gamma-ray Burst Monitor (GBM)

8 keV - 40 MeV

GBM

Fermi-LAT consists of three subsystems

- <u>ACD</u>: segmented plastic scintillators
 - BG rejection
- <u>Tracker</u>: Si-strip detectors & W converters
 - > ~1.5 R.L. (vertical)
 - > Identification and direction measurement of γ -rays
- <u>Calorimeter</u>: hodoscopic Csl scintillators
 - > ~8.5 R.L. (vertical)
 - Energy measurement
 - Also serves as an Imaging Calorimeter

Ideal for the direct and indirect (through γ -ray obs.) measurement of CRs

Fermi_CR_2009Sep.ppt

Fermi-LAT Results (1): Direct Measurements of Galactic CR Electrons

Fermi_CR_2009Sep.ppt **Quick Review of** Dermi **Positron and Antiproton Fraction: 2008-09** Gamma-ray pace Telescope

- Antiproton fraction consistent with secondary production
- Anomalous rise in the positron fraction above 10 GeV
- Several different viable interpretations (>200 papers over the last year)

See also Nature 456, 362 (2008) and PRL 101, 261104 (2008) for pre-Fermi CRE spectrum by ATIC and HESS. **Tsunefumi Mizuno**

Fermi-LAT Capability for CR Electrons

- Candidate electrons pass through 12.5 X_0 on average (Tracker and Calorimeter added together)

• Simulated residual hadron contamination (5-21% increasing with the energy) is deducted from resulting flux of electron candidates

• Effective geometric factor (G_f) exceeds 2.5 [m² sr] for 30 GeV to 200 GeV, and decreases to ~1 [m² sr] at 1 TeV. G_f times live time has already reached several x 10⁷ [m² sr s]. (very high statistics)

• Full power of all LAT subsystems is in use: Tracker, Calorimeter and ACD act together

Exposure factor (effectively) determines the # of counts $E_f(E) = G_f(E)^*T_{obs}$

- The exposure factor determines the statistics
- Imaging calorimeters (vs. spectrometers) feature larger Gf
- <u>Space</u> (vs. balloon) experiments feature longer T_{obs}

Gamma-ray

Fermi-LAT Electron Spectrum

• Pre-Fermi reference model (GALPROP conventional model): ------

- > conventional source distribution (uniformly distributed distant sources)
- > source PL index: γ_0 =2.54
- > diffusion coefficient index: δ =0.33

Implication from Fermi-LAT CRE (1)

• for detail, see D. Grasso et al. arXiv:0905.0636 (accepted by Astroparticle Physics)

• New "conventional" model $\succ \gamma_0=2.42 \ (\delta=0.33, w/reacceleration)$ $\succ \gamma_0=2.33 \ (\delta=0.6, plain diffusion)$

• Fermi CRE spectrum can be reproduced by the "conventional" model with harder injection spectral index (-2.42) than in a pre-Fermi conventional model (-2.54), within our current uncertainties both statistical and systematic.

Implication from Fermi-LAT CRE (2)

• Now include recent PAMELA result on positron fraction

• If the secondary positrons only

> $e^+/(e^- + e^+) \sim E^{(-\gamma_P + \gamma_0)}$, $\gamma_P \sim 2.7$ (proton spectral index) > The hard $e^+ + e^-$ spectrum found by Fermi-LAT <u>sharpens the</u> anomaly

Implication from Fermi-LAT CRE (3)

- It is becoming clear that we are dealing with at least 3 distinct origins of HE e⁻/e⁺
 - Uniformly distributed distant sources, likely SNRs.
 - > Unavoidable e^+e^- production by CRs and the ISM \int_{-}^{-} "conventional" sources
 - And those that create positron excess at high energies. Nearby (d<1 kpc) and Mature (10⁴ 10⁶ yr) pulsars? DM?
 - Energy source: rotation energy of the NS
 - Electron and positrons are re-accelerated at the pulsar wind/shock with a power law spectrum with index Γ ~1.5

• e⁻/e⁺ are expected to be confined until T~10-100 kyr after the birth of pulsar. Only mature (10<T<1000 kyr) pulsars are expected to be relevant

• E_{cut} ~10³ TeV for young PWN. It is expected to decrease with the pulsar age (E_{cut} ~0.1-10 TeV for mature pulsars)

• Fermi data requires an e-/e+ injection spectrum significantly harder than generally expected for shell-type SNRs

Pulsar Scenario

• An example of the fit to both <u>Fermi</u> and <u>PAMELA</u> data with <u>Monogem</u> and Geminga with a <u>nominal choice for the e+/e- injection parameter</u> (blue lines).

This particular model assumes: >40% e⁻/e⁺ conversion efficiency >Γ=1.7 >E_{cut}=1 TeV >Delay=60 kyr

(Discrepancy in positron fraction at low energies can be understood as the charge-sign effect of solar modulation)

Gamma-ray Space Telescope

Dark Matter Interpretation

Like for the case of pulsars, <u>PAMELA and</u> <u>Fermi data tighten the DM constraints</u>

Mo	del	Ann. Final State	Mass (GeV)	$\langle \sigma v \rangle ~(\mathrm{cm}^3/\mathrm{s})$
e^+	e^-	e^+e^-	500	9×10^{-25}
Lepto	philic	$33\%(e^+e^-) + 33\%(\mu^+\mu^-) + 33\%(\tau^+\tau^-)$	900	$4.3 imes 10^{-24}$

Both in the pure e⁺e⁻ and lepto-philic models, a DM interpretation is possible w/ boost factors of 20-100

Tsunefumi Mizuno

- Real breakthrough during last 1-1.5 years in CR electrons: ATIC, HESS, PAMELA and finally <u>Fermi-LAT</u>
- Fermi-LAT provides precise measurements of CR e⁻/e⁺ spectrum in 20 GeV-1 TeV
- With the new data more puzzles than was before. <u>Fermi-LAT's hard</u> <u>e⁻/e⁺ spectrum</u> contradicts with PAMELA's positron fraction.
- We may be <u>coming close to the first detection of cosmic-ray</u> <u>sources</u>
- Source nature (astrophysical or exotic) is still unclear but <u>strongly</u> <u>constrained</u> by data of Fermi-LAT (+ others)
- More results from Fermi-LAT are coming. Extending energy range to 5 GeV – 2 TeV and searching for the CRE anisotropy at a level of ~1%.

Fermi_CR_2009Sep.ppt

Fermi-LAT Result (2): Galactic Diffuse Gamma-ray Emission (Indirect Probe of Galactic CRs)

Outstanding Question: EGRET GeV Excess

• We can "measure" the CR spectrum in distant locations by observing diffuse γ -rays.

- EGRET observations showed excess emission > 1 GeV everywhere in the sky when compared with models based on directly measured CR spectra
- Potential explanations

Unexpectedly large variations in cosmic-ray spectra over Galaxy > Dark Matter > Unresolved sources (pulsars, SNRs, ...)

Instrumental

Fermi-LAT is able to <u>confirm or reject</u> this phenomenon

- |b|=10°-20°: avoid Gal. plane but still have high statistics
- EGRET spectrum extracted for the same region
- LAT spectrum is significantly softer and does not confirm the EGRET GeV excess
- Strongly constrains the DM interpretation

Probing CRs using Gamma-rays from ISM

- Correlation with gas column density <u>reveals the CR spectrum</u>
 Method goes back to SAS-2/COS-B era
- Fermi-LAT's high performance + CR propagation model (e.g. GALPROP) to predict IC
 - Sensitivity significantly improved

Mid/high latitude region:

Detailed study of local CRs (most of the gas is close to the solar system) Galactic plane:

CR gradient in the Galaxy (need to resolve point sources)

Accurate Measurements of Local CRs (1)

- Mid-high lat. region in 3rd quadrant:
 - small contamination of IC and molecular gas
 - correlate γ-ray intensity and HI gas column density

Abdo et al. 2009, accepted by ApJ (arXiv:0908.1171) contact author: TM

• Best quality γ -ray emissivity spectrum (per H-atom) in 100 MeV-10 GeV (Tp = 1-100 GeV)

• Agree with the model prediction from the local interstellar spectrum (LIS)

• Prove that local CR nuclei spectra are close to those directly measured at the Earth

• Ey<100 MeV constrain the e- spectrum

CR Distribution in Galaxy

- CR distribution is a key to understand their origin and propagation
- Distribution of SNRs not well measured
- Previous Gamma-ray data suggests a flatter distribution than SNR/pulsar distributions (e.g., Strong et al. 2004)

• <u>Preliminary analysis of the 3rd</u> <u>quadrant (outer Galaxy)</u> will be discussed. See also the relevant study of the 2nd quadrant (arXiv:0907.0312)

Fermi_CR_2 Gamma-ray Space Telescope Fermi-LAT View of the 3rd Quadrant

- One of the best studied regions in γ -rays
 - Vela, Geminga, Crab and Orion A/B
- Galactic plane between Vela and Geminga (green square) is ideal to study diffuse γ -rays and CRs.

Small point source contamination, kinematically well-separated arms (local arm and Perseus arm)

Fermi_CR_2009Sep.ppt

Negative GLON-CAR

Construction of the Model

HI Emissivity (CR) Spectra

- Emissivity (CR) spectrum of local arm (R=8.5-10 kpc) is slightly smaller than that of LIS
- Decreasing emissivity (local arm => interarm => Perseus arm) are consistent with decreasing CR density across the Galaxy
- Similar CR spectral shape up to R=16 kpc

Gamma-ray

Gamma-ray Space Telescope

CR Flux Distribution

• Emissivity gradient traces the CR density. Robust against the thresholds for point sources included.

- Significantly flatter than the SNR distributions
 - \succ may indicate more CR sources than previously thought in the outer Galaxy, large halo size, etc.
- Comparison with the model prediction is in progress.

• Fermi-LAT is a powerful instrument to measure CRs either directly or indirectly

• Fermi-LAT provides largest statistics of high-energy CR e⁻/e⁺ spectrum.

Precise and hard CR electron spectrum by Fermi-LAT and PAMELA positron fraction require local sources (astrophysical or exotic)

> Source nature is still unclear but strongly constrained.

• CRs in distant locations can be "observed" by diffuse γ -rays.

EGRET GeV-excess not confirmed.

> Fermi proves that local CR nuclei spectra are close to those of LIS.

> Flat and large CR density in the outer Galaxy is indicated.

Thank you for your attention!