Extagalactic Gamma-Ray Background Radiation (EGRB) --- A Theorist's Point of View ---

戸谷 友則

(TOTANI, Tomonori) Dept. Astron., Kyoto University

宇宙線・宇宙物理領域シンポジウム 「高エネルギー宇宙現象の観測の最新成果と今後の展望」 物理学会年会 平成22年9月13日 九州工業大学

宇宙物理学教室 Department of Astronomy Kyoto University The Next Generation of Physics, Spun from Universality & Emergence Productory Information Terrentices in Explore Provide Institute

Importance of EGRB Study

- ∼ fossil record of the comic evolutionary history of contributing sources
 - ~ blazars / AGNs → accretion and jet activity history of supermassive black holes
 - \sim star-forming galaxies \rightarrow cosmic-ray production and interaction with ISM
- ~ Potential contribution from exotic sources
 - ∼ dark matter annihilation
 - SUSY predicts a natural DM candidate "neutralinos" with a mass range of ~100 GeV - 10 TeV
 - ∼ decay products in GeV band

Outline

- ∼ Origin of the MeV-region background
 - ∼ non-thermal tails of AGNs?
 - ∼ "MeV blazars?"
 - ∼ more!?
- ∼ Origin of the GeV-region background
 - \sim blazars
 - \sim star-forming galaxies
 - ∼ more!?

The "Mystery" of MeV Background

Cosmic SN Rate Evolution

- SN Ia rate evolution to z~1 now well known
- ~10 times short to explain MeV background from SNe Ia (Ahn+ '05; Strigari+ '05)

"MeV Blazars" and MeV background

- blazars detected by Swift/BAT (10-55 keV) may significantly contribute to MeV background (Ajello+'09)
 - ~ 26 FSRQ and 12 BL Lacs
- \sim but depends on extrapolation from hard-X to MeV
- \sim sample not large enough to reconstruct cosmological evolution of LF
- a fine-tuning required to reproduce a smooth power-law tail from CXB
 must be distinct population from blazars found in GeV

MeV Dark Matter?

∼ annihilation to MeV gamma-rays

- possible connection to the 511 keV emission from the Galactic Center
- ~ No natural particle candidate
- ✓ the 511 keV emission may also be explained by astrophysical sources
 - ∼ Sgr A*
 - ∼ X-ray binaries

Ahn+Komatsu '05

Active Galactic Nuclei

The Picture of AGN X-ray Spectra ~ picture of normal X-ray AGNs (e.g., Seyferts)

AGN X-ray Spectrum

- X-rays are produced by Compton up-scatter of UV disk photons by hot electrons in corona
- "the exponential cut-off" comes from "assumption" of thermal electron distribution in corona
- what if a small amount of nonthermal electrons exist?

schematic AGN spectrum Fabian 1998

MeV background by AGNs with nonthermal coronal electrons

- Comptonization calculation by Inoue, TT, & Y. Ueda 2008, ApJ, 672, L5
- ∼ Energy fraction 3.5%, $dN_e/dE_e \propto E_e^{-3.8}$ will explain MeV background
- consistent with MeV upper limits on nearby AGNs

the Origin of Non-thermal Electrons in Hot Coronae in AGNs?

- \sim The heat source of corona is still an open question
 - ~ A populuar scenario: magnetic reconnections (e.g. Liu+'02)
 - ~ non-thermal particles are accelerated in reconnections!

Particle accelerations in reconnections

- soft power-law spectrum (dN/dE ~ E⁻⁴) is typically found in solar flares or Earth magnetosphere
- Interestingly very similar to X-ray-MeV background spectrum
 - A reasonable explanation, supporting the reconnection hypothesis for AGN coronae

Particle accelerations in reconnections

- soft power-law spectrum (dN/dE ~ E⁻⁴) is typically found in solar flares or Earth magnetosphere
- Interestingly very similar to X-ray-MeV background spectrum

Particle accelerations in reconnections

- soft power-law spectrum (dN/dE ~ E⁻⁴) is typically found in solar flares or Earth magnetosphere
- Interestingly very similar to X-ray-MeV background spectrum
 - A reasonable explanation, supporting the reconnection hypothesis for AGN coronae

MeV background: Summary

- ~ The "theoretically best" explanation is "non-thermal tail" from normal AGNs
 - ∼ smooth power-law connection to CXB
 - ∼ non-thermal electrons naturally expected in AGN coronae
 - \sim not confirmed by observation yet
- ~ Possibilities of the contribution from completely different sources
 - \sim SN Ia: too small rate from recent observations
 - ~ MeV blazars: may have significant contribution suggested by Swift data
 - ∼ MeV dark matter: no good theoretical motivation for MeV DM

~ We need deeper observations in MeV!

Origin of the GeV background

the primary candidate: blazars

- ∼ The majority of extragalactic GeV sources are blazars
- ∼ Blazars:
 - ∼ flat spectrum radio quasars (FSRQ) (in high luminosity regime)
 - ~ BL lac objects (in low luminosity regime)

blazars

GeV background from Blazars

Padovani+'93; Stecker & Salamon '96; Chiang & Mukherjee '98; Mücke & Pohl '00; Narumoto & Totani '06; Giommi et al. '06; Dermer '07; Pavlidou & Venters '08; Kneiske & Mannheim '08; Inoue & Totani '09

- ∼ The basic scheme:
 - luminosity function (LF) evolution model (X, radio, etc.)
 - ∼ fitting to EGRET blazar distribution (flux & redshift)
 - ∼ spectral modeling of blazars
 - ∼ (power-law, SED sequence, theoretical model, ...)
- ~ The latest model by Inoue+TT '09 (ApJ, 702, 503)
 - ∼ "LDDE" LF evolution based on X-ray surveys of AGNs
 - \sim the SED sequence for blazar spectra
 - ∼ careful fitting to the EGRET data by likelihood analysis
 - ~ likelihood analysis including radio counterpart detection probability

AGN Luminosity Function (LF) Evolution

~ LDDE (Luminosity Dependent Density Evolution)

- ~ good fit to X-ray AGNs to $z\sim3$
- \sim assume $L_X \propto L_\gamma$ for blazar-AGN connection

blazar spectral energy distribution (SED)

- two broad peak by synchrotron and inverse-Compton by non-thermal electrons
- ∼ the SED sequence (high peak frequency for lower luminosity)
 - ∼ Fossati+'97, Donato+'01

Fit to EGRET blazars

∼ Two basic parameters:

- \thicksim constant between luminosity L_X and L_γ
- \thicksim constant between number n_X and n_γ (beaming)
- ~ good fit to 46 EGRET blazars up to $z\sim3$ (cosmologically significant!)
- ∼ LDDE better fits than "pure luminosity evolution" model
- ~ not large uncertainty about evolution

Prediction of Gamma-Ray Background prediction before the Fermi data came out

Comparison with the Fermi Data

model curves are for total EGRB including all sources in the universe
 should be compared with "unresolved+source" Fermi data

Source Counts

- model overestimates at bright end:
 - model uncertainty?
 - small number statistics?
 - cosmic variance/large scale structure?
- model underestimates at the faint end
 - model uncertainty?
 - detection efficiency uncertainty?
- ✓ break of logN-logF
 - \sim rough agreement at 10⁻⁷ ph/cm²/s
 - main contributer to EGRB
 - ∼ blazar EGRB mostly resolved
 - ∼ great success beyond EGRET

Blazars and EGRB in the Fermi Era

- ∼ Rough agreement between the model blazar LF and observation
 - ∼ good agreement in EGRB spectra and source counts around logN-logF break
 - ∼ the AGN unification scheme (blazar=jet of AGNs) and the blazar SED sequence paradigm consistent with observations
- \sim fraction of all blazar (resolved+unresolved) in the total Fermi EGRB (resolved + unresolved) in terms of photon flux > 100 MeV
 - ~ Fermi data estimate for blazars: ~43% (Abdo+'10)
 - \sim 22.5% in "unresolved" EGRB flux (when logN-logS extrapolated to zero flux)
 - \sim IT'09 prediction for blazars: ~45%
 - \sim Both Fermi data and model indicate the blazar component has been resolved

~ How about the remaining component!?

Gamma-rays from Star-forming Galaxies

 \sim harder spectra for starburst galaxies than MW

 \sim good correlation with SFR×M_{gas}

gamma-ray background from star-forming galaxies

- ~ Makiya, TT+'10, arXiv:1005.1390v1
 - see also Pavlidou+Fields '02; Thompson
 +'07,
- based on a detailed cosmological galaxy formation model that reproduce a number of galaxy observations
- $\sim L_{\gamma} \propto (SFR) \times M_{gas}$
- ~10% contribution to the total gammaray background
- predicted spectrum very similar to the observed EGRB

Origin of GeV EGRB: Concluding Remarks

- \sim Contributions to EGRB from reasonable sources (in photon flux > 100 MeV)
- \sim blazars: \sim 50% (confirmed both by observation and model)
- \sim Star-forming galaxies: 10-20% (theoretical+local obs.)
- \sim normal AGN's non-thermal tail: <~20% (theoretical)
- >~ 80% of EGRB can be explained by astrophysically reasonable source contributions
 - \sim the predicted spectrum also in good agreement with observation
 - remaining <~20%? systematic uncertainties both in model and obs.?</p>

∼ No evidence (sadly!) for exotic sources like dark matter annihilation

- ∼ star-forming galaxy component difficult to resolve
- ∼ direct DM detection impossible under ~10% of EGRB. Anisotropy?

