

Gamma-Rays from Supernova Remnants: Illuminating the Origin of Cosmic-Rays

Yasunobu Uchiyama (SLAC) on Behalf of the Fermi-LAT Collaboration

Map: Fermi-LAT 1-yr Observations

Diffuse γ-ray along Milky Way = the "pool" of Galactic Cosmic-rays

Supernova Remnants = Cosmic-ray Factories?

The second se

Cas A

W51C

W44

IC 443

1

the "pool" of Galactic Cosmic-rays

Supernovae and their Remnants

Supernova explosion:

10 billion times brighter than the Sun

Type 1a: energy = thermonuclear fusion E = 2 MeV/nucleontotal energy: 10^{51} erg

Type II, Ib, Ic : energy = gravity E = 200 MeV/nucleontotal energy: $10^{53} \text{ erg} (99\% \text{ neutrinos})$ kinetic energy: 10^{51} erg

Kinetic Energy (10⁵¹ ergs) released as expanding stellar material (ejecta, ~M_{sun}) creates

a "supernova remnant" (SNR)

Sources of (heavy) elements Sources of kinetic/turbulent energy in ISM **Sources of cosmic rays**

23 years after SN explosion...

SNR 1987A

~100 years after SN explosion...

The Youngest Galactic SNR: G1.9+0.3

Chandra X-ray Image (Reynolds+09)

Age < 140 yr (~100 yr) Vs ~ 14,000 km/s (at 8.5 kpc)

Integrated X-ray spectrum

- → dominated by synchrotron radiation
- → Acceleration of TeV electrons

Diffusive Shock Acceleration (DSA) = first order Fermi acceleration

diameter ~ 100"

To understand the origin of cosmic-rays:

- Maximum attainable energy; but e⁻ suffer from radiative losses
- **•** Total energy content of accelerated p/e^- ; but e^- has a minor contribution

~340 years after SN explosion...

SNR Cassiopeia A (~340 yr old)

Fermi-LAT Coll. (2010)

GeV γ-ray detection (Fermi-LAT) TeV γ-ray detections (HEGRA,MAGIC,VERITAS)

(a) **Leptonic** (Bremsstrahlung + IC) B = 0.12 mG CR electrons: $W_e = 1 \times 10^{49}$ erg

Not consistent with $B \sim 0.5 \text{ mG}$ (X-ray)

(b) **Hadronic** (π^0 decay)

 $\begin{array}{l} B > 0.12 \mbox{ mG} \\ CR \mbox{ protons: } W_p = 5 x 10^{49} \mbox{ erg} \end{array}$

CR content: 2% of E_{SN}

E_{max} : > 10 TeV

~10,000 years after SN explosion...

W51C

Abdo+ (2009)

- Middle-aged (~ 3×10^4 yr) Distance: ~ 6 kpc
- Radio shell, thermal X-ray (black contours)
- Interaction with a molecular cloud (Koo+)

Fermi-LAT Count Map (Front Events; 2–10 GeV)

W51C

Fermi-LAT Spectrum

π^{0} -decay (long dash), bremsstrahlung (dash), IC (dot)

W44

Castelletti+2007

lines from H₂ gas (Spitzer) radio synchrotron (VLA) The remnant of a supernova exploded in a <u>molecular cloud</u> (Age ~10000 yr)

- Distance: ~ 3 kpc
- Mixed-morphology SNR
 - radio: shell
 - thermal X-ray: center filled
- Interaction with a molecular cloud

W44

Castelletti+2007

lines from H₂ gas (Spitzer) radio synchrotron (VLA) The remnant of a supernova exploded in a <u>molecular cloud</u> (Age ~10000 yr)

- Distance: ~ 3 kpc
- Mixed-morphology SNR
 - radio: shell
 - thermal X-ray: center filled
- Interaction with a molecular cloud

Fermi-LAT Image of W44 Abdo+ (2010)

LAT Deconvolution Map LAT Count Map (2–10 GeV) r00:001 100:00 58:00.0 58:00.0 18:56:00.0 54:00.0 18-56-00.0 54:00 **Contours: Spitzer 4.5um** 200 400 600 800 1000 200 1200 14001600 1800 0 400600 [counts/deg2] [counts/deg2] [conuts/ged_ 009 900 800 1000 1200 1400 1600 180 1001

Black cross: PSR B1853+01 (No evidence of pulsed gamma-rays)

Fermi-LAT Spectrum of W44 Abdo+ (2010)

IC 443

Abdo+ (2010)

- a molecular cloud
 - $\rightarrow \pi^0$ -decay gamma-rays

Abdo+ (2010)

LAT Count Map (2–10 GeV)

W28

Abdo+ (2010)

Fermi-LAT Detections of SNRs

Object	Diameter	Age	Cloud Interaction	Lγ 1-100 GeV
Cas A	5 pc	330 yr	No	$4x10^{34} \text{ erg/s}$
W49B	10 pc	~3000 yr	Yes	9x10 ³⁵ erg/s
3C 391	15 pc	~6000 yr	Yes	$6x10^{34} \text{ erg/s}$
G349.7+0.2	17 pc	~6000 yr	Yes	9x10 ³⁴ erg/s
IC 443	20 pc	~10000 yr	Yes	$8x10^{34} erg/s$
W44	25 pc	~10000 yr	Yes	$3x10^{35}$ erg/s
W28	28 pc	~10000 yr	Yes	$9x10^{34} \text{ erg/s}$
CTB 37A	50 pc	~20000 yr	Yes	$9x10^{34} \text{ erg/s}$
G8.7-0.1	63 pc	~30000 yr	Yes	$8x10^{34} \text{ erg/s}$
W51C	76 pc	~30000 yr	Yes	8x10 ³⁵ erg/s

References: Abdo+2009, 2010a, 2010b, 2010c, Castro & Slane 2010

Characteristics of LAT-Detected SNRs

Surface Brightness Diagram (d-independent) LAT (1-100 GeV) vs Radio (1 GHz)

Characteristics of LAT-Detected SNRs

SNR Diameter vs Radio Surface Brightness

Two Different Models

a large compression ratio due to radiative cooling

Compressed CRs

blastwave

Examples of Aharonian-type Model

Ohira+ (2010)

Figure 1. Comparison of the model results (solid line) with *Fermi* (red) (Abdo et al. 2009b) and HESS (blue) (Fiasson et al. 2009) observations for SNR W51C.

Figure 3. Comparison of the model results (solid line) with Fermi (red) (Abdo et al. 2010c), Whipple (green) (Buckley et al. 1998), HEGRA (blue) (Aharonian et al. 2002), Milagro (purple) (Abdo et al. 2009a) observations for SNR W44. The data of Whipple, HEGRA and Milagro are upper limits.

Two Different Models

Shocked Molecular Cloud

Postshock structure of a fast (>50 km/s) molecular shock

Hollenbach & McKee (1989)

Shocked Molecular Cloud

Postshock structure of a fast (>50 km/s) molecular shock

Hollenbach & McKee (1989)

immediate postshock region (UV)	cal radio/gamma
Pre-shock density: n_0 (cm ⁻³) Cloud shock velocity: v_{s7} (10 ⁷ cm/s) Pre-shock B-field: $B_0 = b n_0^{1/2}$ (µG) f)
Radiatively-cooled gas (final) densi $n_m/n_0 = 77 v_{s7}/b$	ty: <i>n</i> _m
Radiatively-cooled gas (final) B-fie $B_m/B_0 = n_m/n_0$	ld: B _m
Both density/B-field can be compres (10-100).	ssed by a large factor

CR Acceleration at Cloud Shock

Diffusive shock acceleration:

Since $v \sim 100$ km/s, a conservative assumption is Seed = the "pool" of Galactic CRs (Namely, Re-acceleration) (if this is not enough, seed = thermal particles)

Spectral break:

Ion-neutral collision \rightarrow Alfvén wave evanescence (Malkov+2010) Spectral steepening by one power at $cp_{br} = 2eBV_A/v_{i-n}$

Maximum energy:

Age-limited at $cp_{\text{max}} = 500 v_{\text{s}7}^2 B_{-5} t_4 / \eta$ GeV

Expected Gamma-ray Luminosity

$$L_{\gamma} \propto f n R E^{2/3} B^{-4/3}$$
$$\rightarrow L_{\gamma} \sim f \times 10^{36} \text{ erg/s}$$

f: Preshock cloud filling factor f = 0.2 fixed

- *n*: Preshock cloud density in cm^{-3}
- *B*: Preshock B-field in μ G $B = 2 n^{1/2}$ fixed

R: SNR radius in pc

E: SN Kinetic Energy in 10^{51} erg

Uchiyama+10

Parameters for W44 & IC 443

TABLE 1 MODEL PARAMETERS					
Parameters	W44	IC 443			
Assumed SNR Dynamics					
Distance: D Radius: R	2.9 kpc^{a} 12.5 pc ^a	1.5 kpc 10 pc			
Age: t Explosion energy: E ₅₁	$(0 = 15^{\circ})$ 10000 yr ^a 5 ^a	$(0 = 25^{\circ})$ 10000 yr 1			
	Free parameters				
Preshock Cloud Parameters (Free Parameters)	Free pa	rameters			
Preshock Cloud Parameters (Free Parameters) Density: n_0 Filling factor: f Magnetic field: B_0	Free pa 200 cm ^{-3a} 0.22 20 µG	rameters 150 cm ⁻³ 0.05 20 μG			
Preshock Cloud Parameters (Free Parameters) Density: n_0 Filling factor: f Magnetic field: B_0 Dependent Parameters	Free pa 200 cm ^{-3a} 0.22 20 μG	150 cm ⁻³ 0.05 20 µG			

Results for W44

secondary) -decav 10⁻⁸ ynch (primary) (secondary) ns (primary) radio '-ray 10-10 √f, [erg.cm⁻² 10-12 10-14 10-3 107 108 109 1010 -6 10^{-4} 10 10-5 1011 E [eV] E [eV]

- radio & γ-ray fluxes can be explained by **re-acceleration of the pre-existing GCRs**

- flat radio index (α=0.37) is naturally predicted
- GeV break may be explained by Alfvén wave evanescence

Uchiyama+10

Comments

F. Aharonian

"Although I need more time to understand the details – generally I find this a very good idea! Anyway, my opinion about your paper is very positive."

H. Völk

"Altogether I found this a very interesting piece of work, congratulations!

And I think that the basic point of dominant re-acceleration and adiabatic energization in shocks that compress dense clouds in a supernova remnant comes out **quite convincingly**. I am sure that **Roger Blandford** is happy to see his old idea so successfully be confronted with reality."

Summary

V~1000 km/s shock : proton acceleration > 10 TeV V~100 km/s shock : proton (re-)acceleration < TeV