CERN180GeV π^+ ビームを用いた ATLAS シリコン検出器の性能評価

M1479003 井本 昭子

広島大学大学院博士課程前期 理学研究科物理科学専攻 高エネルギー宇宙・素粒子実験研究室

平成16年2月10日

概 要

物質の最小構成要素はクォークとレプトンの 12 種類の素粒子である。それらの粒子の間では、ゲージ粒子であるグルーオン・光子・W/Z 粒子が交換されて力が生じている。この世界では「標準モデル」とよばれる理論が存在し、それからはずれた現象はまだ1つも見つかっていない。しかし、標準モデルになくてはならない「ヒッグス粒子」のみが現在の時点でまだ見つかっていない.

CERN 研究所で、2007 年から LHC 加速器が稼働し始める。LHC 計画とは、陽子・陽子衝突 をさせて重心系エネルギー 14TeV の高エネルギー領域でヒッグス粒子や超対称性粒子などの未 知の粒子を発見し、物質の究極の内部構造と相互作用を探求することが目的である。生成され たヒッグス粒子は瞬時に 2 次粒子に崩壊してしまう。2 次バーテックス標識の決定や精密な飛 跡検出は、ヒッグス粒子や超対称性粒子探索のみならず多くの測定で重要である。したがって、 より位置精度の良い飛跡検出を行なうために飛跡検出器は衝突点に近い一番内側に設置される。 しかし、そのために 10 年間の実験期間中に 3×10¹⁴ particle/cm² の放射線損傷を受けてしまう。 また LHC のバンチ衝突間隔 25ns ごとに数百億個の粒子が生成するので、ATLAS 検出器では荷 電粒子の飛跡検出に高速で大量のデータを処理しなければならない。そのためにバイナリー読 み出しをするシリコンマイクロストリップ検出器に放射線耐性に優れた ASIC を搭載したもの を採用している。このシリコン検出器は 1536 チャンネルの読み出しをするものが全部で 2112 個設置される予定である。放射線損傷を受けたシリコン検出器は性能が劣化してしまうため、 そのようなシリコン検出器の振る舞いを調べておく必要がある。

そこで本研究では、2003年の5月に180GeVの π^+ ビームを用いて、CERN・H8施設で行なわれたビームテストの解析をした。ビームラインには疑似ラピディティーの大きい領域をカバーするエンドキャップタイプと小さい領域をカバーするバレルタイプの2種類のシリコン検出器計12枚を、同時に π^+ ビームが通過するようにを交互に設置した。その内7枚のシリコン検出器には事前に放射線損傷を与えたものを用意した。その前後にはテレスコープ、最前にはトリガーのためにプラスチックシンチレータを設置した。テレスコープヒット情報からreconstructされたビームと、シリコン検出器のヒット情報からreconstructされた飛跡を比較して解析イベントの選別を行なった。

解析手法は、ビームテストで収集されたデータを offline 時に C++ プログラミングで書かれた マクロを ROOT 上ではしらせることによって結果を得た。位置分解能やシリコンにかけるバイ アス電圧と検出効率を調べることにより、放射線損傷を受けたシリコン検出器の性能を評価し た。その結果、放射線損傷を与えたものはキャリブレーションスケールに依存しない信号雑音 比の値が悪くなることが分かったが、これはシリコン半導体の空乏化が不完全であったと考え られる。しかし、10年分の放射線損傷を与えたものに関して言えば、バレルタイプには 300V、 エンドキャップタイプには 350V のバイアス電圧をかけることによって完全空乏化が成されるこ とが分かった。また、解析に使用できる信号を出すことも確認した

目 次

第1章	序論	3
第2章	ATLAS 実験	5
2.1	LHC 計画	5
2.2	ATLAS 実検	6
	2.2.1 ATLAS 実験の目的	6
	2.2.2 標準理論ヒッグス	7
2.3	ATLAS 検出器	11
第3章	シリコンマイクロストリップ検出器	17
3.1	シリコンセンサーの動作原理	17
3.2	放射線損傷	18
3.3	バレルモジュールとエンドキャップモジュール	19
3.4	ABCD3T チップ	21
第4章	ビームテスト	24
4.1	セットアップ	24
4.2	読み出し....................................	27
第5章	解析方法	30
5.1	DST 7 7 7 7 7 7 7 7	30
5.2	イベント選別	31
5.3	位置分解能について	32
	5.3.1 residual の定義	33
	5.3.2 クラスターの扱い	34
5.4	トラック選別	35
5.5	読み出し ASIC の波高	37
第6章	結果と考察	40
6.1	位置分解能。	40
6.2		41
6.3		45
6.4	後出効率	46

6.5	検出効率のバイアス電圧依存性	48
6.6	S-N 比	50
第7章	まとめ	52
参考文南	χ	54

第1章 序論

物質の基本構成要素である素粒子はどんなものであり、それがどのような法則に従うのか、 ミクロな世界の法則を知ることは、いつの時代においても物理学の中心課題の1つである。

ゲルマンのクォーク模型は1980年代に、「標準模型」というゲージ場理論の本質的モデルへ と発展、到達した。現代の素粒子論は、一応この標準模型をもって代表されるといってよい。 しかし、素粒子の質量の問題をはじめとして、未解決な問題がいくつもあることから、標準模 型をもって素粒子が完結するわけではない。

標準模型では、初めゲージ場や基本粒子は質量をもたないものとしてラグランジアンの中に 導入され、質量は対称性の破れの結果発生したものと解釈される。対称性の破れを起こさせる 目的でヒッグス場とよばれる補助場が仮定されている。ヒッグス場は $SU(2)_L$ の粒子数を担う 2 重項組の複素スカラー場で、その真空期待値 $\nu(\sim 250 \text{GeV})$ が対称性を破るとともに質量のス ケールを与え、個々の質量の粒子はヒッグス場との結合定数に比例する。対称性の破れたヒッ グス場成分はゲージ量子 W[±] と Z⁰ も縦波成分となり、残りの1成分は中性のヒッグス・ボソン として現れる。

標準模型の中にはヒッグス場の真空期待値νや、いろいろな結合定数など、現象論的パラメー タがたくさん含まれている。これらのパラメータを全て決定することは、ヒッグス・ボソンの存 在の検証とともに、標準模型に残された最後の大きな課題である。現在までは、CERN(Conseil Européen pour la Recherche Nucléair)・LEP 加速器を使って W・Z ボゾンの超精密測定や、 TEVATRON におけるトップ・クォークの発見などにより、標準モデル理論が高い精度で成立 していることが証明された。そこで、標準理論において唯一発見されていないヒッグス・ボソ ンの発見および標準理論を越える超対称性や新しい相互作用などの発見を目指してLHCの建 設が始まった。このLHC加速器の衝突点の内の1つに、ヒッグス粒子探索を主な目的とした ATLAS 検出器が建設中である。生成されたヒッグス粒子は瞬時に2次粒子に崩壊してしまうた めに、ATLAS 検出器では衝突点に近い場所で、精度の良い飛跡検出を行なうことが可能なよう に、シリコンマイクロストリップ飛跡検出器を設置する。しかし、衝突点に近いことから、こ のシリコン検出器は10年間の実験のうちに 3×10^{14} particle/cm² の放射線を受けてしまう。半導 体検出器はその放射線被曝による放射線損傷によってその性能を劣化させてしまうことはよく 知られている事実である。したがって、LHC実験が開始されて10年後、放射線損傷を受けたシ リコン検出器が支障なく使用できるかどうかを事前に調べておく必要がある。そのために、前 もって放射線損傷を与えたシリコン検出器のビームテストが今日までに幾度と行なわれてきた。

2003年5月にも CERN・H8 施設で 10 年分の予想損量 3×10^{14} particle/cm² を被曝したものと、 5 年分の 1.5×10^{14} particle/cm² の放射線被曝を与えたシリコン検出器の性能評価を目的とした ビームテストが行なわれた。また今回のビームテストでは $\sim 1.5T(\sim 5000A)$ の磁場環境をつく

ることによりビーム軌道を曲げ、そのトラッキング精度の測定も行なわれた。さらに、本番の LHC 実験と同じバンチ衝突間隔である 25ns においても、その電荷収集が充分に成されるかの 確認も行なわれた。

そこで本論文では、このビームテストの結果を解析し、主に放射線損傷を受けた検出器の性能についての報告をする。

本論文の構成は以下のとおりである。

第2章にまずLHC計画について簡単にふれる。その後ATLAS実験における目的およびATLAS 検出器の構成について述べる。第3章では、シリコン検出器の動作原理とその放射線損傷につ いて、さらに実際ATLAS検出器に用いられるシリコン検出器の概要とその読み出し用ASIC チップについて述べる。第4章では、今回行なわれたビームテストのセットアップとデータ収 集のタイミングについて述べる。第5章では、オフライン時の解析におけて用いるツールキッ トとその解析手順について説明し、第6章でその解析結果、第7章にまとめをする。

第2章 ATLAS実験

2.1 LHC計画

LHC(Large Hadron Collider) とは、CERN(欧州原子核研究機構)において行なわれていた 電子・陽電子衝突型加速器 LEP(Large Electron Positron)実験に用いられていた、周長 27km のトンネルに超伝導磁石を設置した、重心系エネルギー 14TeV、の陽子・陽子衝突型加速器で あり、2007年より実験を開始、約 10 年間の稼働を予定としている.

最初の3年間のルミノシティーは $10^{33}cm^{-2}s^{-1}$ 、4年後からは $10^{34}cm^{-2}s^{-1}$ に達する予定であり、ビーム衝突頻度は40MHz(25ns)と以前のものと比べ非常に大きく、また一回のバンチ交差当たりで予想される陽子陽子衝突は平均23回である。

以下に LHC の主要パラメータを示す。

LHC の主要パラメータ			
主リングの周長	26.66 km		
陽子エネルギー	$7.0 { m TeV}$		
入射エネルギー	$450 {\rm GeV}$		
ルミノシティー	$10^{33} cm^{-2} s^{-1}$ (始めの3年)		
	$10^{34} cm^{-2} s^{-1} (4年目から)$		
バンチ衝突頻度	40MHz		
バンチ陽子数	1.1×10^{11} 個		
バンチ数	2835 バンチ		
バンチ寿命	10 時間		
双極電磁石数	1232 台 (長さ 14.2 m)		
双極電磁石磁場	8.33 T		

LHC での物理においての最大の目的は、電弱相互作用の自発的対称性の破れの解明といえ る。標準理論で予想されるヒッグス粒子が存在するならば、1年間の実験により約1~10万 個のヒッグス粒子が生成されるであろうとのシミュレーション結果もでている。さらに、LHC は従来にない高エネルギーで粒子の衝突が起こるので超対称性粒子などの未知の粒子や新しい 相互作用などの出現する可能性も十分あるといえる。

このような多彩な物理を提供してくれる LHC ではあるが、高エネルギーかつ高頻度衝突実験であるがゆえに、今まで経験したことのない膨大なバックグランドに直面してしまうことになる。したがって、LHC 実験における成否は測定器の如何にかかっているといっても過言ではない。

LHC には、4ヶ所の衝突点が存在しており、それらの衝突点には、14TeV の重心系衝突エ ネルギーを活用した TeV 領域の素粒子の探索を行なう汎用検出器の ATLAS(A Troidal LHC Apparatus) とCMS(The Compact Muon Solenoid)、衝突において大量に生成されたボトムクォー クを用いて CP 非保存の物理を研究する LHC-B、鉛原子核を高エネルギーで衝突させクォーク・ グルーオン・プラズマ (QGP) を実験室で作ろうとする ALICE(A Large Ion Collider Experiment) が図 2.1 のように設置されている.

図 2.1: LHC の全景

2.2 ATLAS 実検

2.2.1 ATLAS 実験の目的

LHC は今までにない高エネルギーでの粒子の衝突が起こるために、トップ・クォークの精密 測定、ヒッグス粒子や超対称性粒子の発見など非常に多彩な物理成果が期待されている。一方、 衝突頻度も高いために、ボトム・クォークやW粒子やZ粒子などのゲージ・ボソンの質量や崩 壊過程の精密測定、QCD 精密研究が可能である。

以下に、その ATLAS 実験における主要な5つのトピックスを示す。

標準理論の精密検証

トップ・クォークの質量や部分崩壊率の測定を通して、標準理論の検証を 行なう。また、WW対生成過程の研究を通して、電弱対称性の破れの可能性を 探る。 • ヒッグス粒子の発見とその研究

素粒子の質量の起源である考えられているヒッグス粒子の発見は、真空中 に凝縮していると考えられているスカラー場の直接的な証拠となる。

● ボトムクォークの精密研究

物質と反物質が非対称に存在していることを説明するとされている「CP対称性の破れ」を、大量に生成されるBメソンを用いて精密に測定する。さらに、ボトム・クォークの稀崩壊現象を探求することは、標準理論を越える新しい物理を提供してくれる可能性があるという点で重要である。

超対称性粒子の探索

標準理論を越える新しい素粒子現象を説明する超対称性は、最も有望視されており、ATLAS実験で発見可能な領域に、数多くの新粒子の存在を予言している。

QCD の精密研究

高い横運動量を持ったジェット・イベントの生成断面積の測定を通して、 10⁻¹⁸cmの超微細なスケールで、現在、素粒子とされているクォークを観察す ることが可能となり、さらに内部構造が存在しないかを探求する。

2.2.2 標準理論ヒッグス

相互作用のかたちは、場の量子論(ゲージ場理論)にもとずいている。量子色力学(QCD) とワインバーグ・サラム理論を合わせた「標準理論」は、1eVの原子の振る舞いから 100GeV までの現象を厳密に計算できる。しかし、原理として用いているゲージ理論が成り立つには、 全ての素粒子の質量が厳密にゼロにならなければならないが、実験的にクォークやレプトンは 質量を持つことが分かっている。そこで「ヒッグス場」の存在を考える。ビッグバンから 10⁻¹³ 秒後、真空の相転移が起こり、ヒッグス粒子で満たされたヒッグス場とクォークやレプトンが 反応し、その結果、質量を持っているように振る舞ってしまうというものである。したがって、 ヒッグス粒子の発見はその相転移、すなわち電弱対称性(U(1)×SU(2))の破れのメカニズムの 理解に非常に重要であるといえる。

ヒッグス粒子の性質は標準モデルを使って計算することはできるが、その質量は計算するこ とができない。しかし、ユニタリー条件の要請から 1*TeV* 以下であると見積もられている。ま た、電弱真空の安定性の要求からヒッグス粒子の質量の下限値はトップクォークを越えていな ければならないはずである。そこで ATLAS 実験では、115*GeV* ~ 1*TeV* の領域でヒッグス 粒子の探求を行なう予定である。

図 2.2 に、LHC における標準理論ヒッグス粒子の生成断面積を示す。

図 2.2: 標準理論ヒッグス粒子の生成断面積

また、陽子陽子衝突において主要な標準理論ヒッグス粒子の生成過程は以下の4つである。

(a) $gg \rightarrow H^0_{SM}$ (gluon fusion)

トップ・クォークやボトムクォークのループを介した過程で、最も断面積が大きい。しかし、 ヒッグス粒子は単体で生成されるので、ヒッグス粒子が崩壊してできる粒子以外に大きな横運 動量を持つ粒子がなく、バックグランドとの選別が厳しい。

(b) $qq \rightarrow qqH_{SM}^0$ (W/Z fusion Process)

2つのクォークから放出されたゲージ・ボソンからヒッグス粒子が生成されている。反応断 面積も比較的大きく、ゲージ・ボソンを放出して反跳したクォークに起因する大きな横運動量 を持つジェットが2本観測される。

(c) $qq \rightarrow (W/Z)H_{SM}^0$ (W/Z associate production)

クォークペアの対消滅で生成されたゲージ・ボソンから、さらにヒッグス粒子が放射される 過程である。終状態にゲージ・ボソン (W/Z) が観測される。

(d) $qq/gg \rightarrow ttH_{SM}^0$ (top associate production)

対生成されたトップ・クォークから、ヒッグス粒子が放出される過程である。トップ・クォーク の湯川結合という重要な情報を含んでいる。反応断面積は小さいが、特徴のあるトップ・クォー ク・ペアを終状態に含んでいるのでバックグランドが少なく、軽いヒッグスには重要な過程で あるといえる。 図 2.3 にこれら 4 つのファイマン・ダイアグラムを示す。

図 2.3: ATLAS における標準理論ヒッグス粒子の生成過程

次に、ヒッグス粒子の崩壊過程について述べていく。

図 2.4 に標準理論ヒッグス粒子崩壊過程の分岐比より、ヒッグス粒子の崩壊はヒッグス粒子 の質量に依存していることが分かる。以下、ヒッグス粒子の質量領域にともなう崩壊過程につ いてそれぞれ述べていく。

- 80 GeV < M_H < 120 GeV この質量領域では、 $\tau^+\tau^-$ や $c\bar{c}$ への崩壊もあるが、 $H \rightarrow b\bar{b}$ への崩壊が支配的であると 言える。しかし、高エネルギーでの陽子陽子衝突から引き起こされる QCD によるバック グラウンド $b\bar{b}$ 生成と区別することは困難なため、比率としては非常に低いが $H \rightarrow \gamma\gamma$ に注目する。しかし、ここでも QCD バックグラウンドである $q\bar{q} \rightarrow \gamma\gamma$ や $g\bar{g} \rightarrow \gamma\gamma$ から生じる γ を $H \rightarrow \gamma\gamma$ と誤認してしまう場合がある。この事態を避けるためにも、 エネルギーと分解能が優れた電磁カロリメータが要求される。
- 120 $GeV < M_H < 190 \ GeV$ この質量領域では、徐々に $H \rightarrow WW$ への分岐比が大きくなり、ヒッグスの質量が 160 GeV になったときにその分岐比はほぼ100%になる。この質量は W の2倍の質量に あたる。WW への分岐比が増えると同時に $H \rightarrow ZZ$ の分岐比も増えてくるが、WWを越えることはなく、ほぼ 1:2の割合で平行していく。
- 190 $GeV < M_H < 500 GeV$ 500 GeV 付近から、 $H \rightarrow t\bar{t}$ への分岐比が出てくるが、WWや ZZ の分岐比を越える ことはない。

• 500 $GeV < M_H$

H_M が 700*GeV* 付近を越えた領域では、ヒッグス粒子の崩壊幅が広がってくるために、 分岐比の最も大きい WW への崩壊過程を用いてイベント数を稼ぐことが重要となって くる。

図 2.4: 標準理論ヒッグス粒子の崩壊過程分岐比

最後に、図 2.5 に ATLAS 実験における標準ヒッグス粒子の発見能力を示す。

130*GeV* を境に軽い領域では top associate production が重要であり、重い領域では gluon fusion production と $H \rightarrow ZZ \rightarrow 4l$ が重要になってくる。また、 M_H がほぼ 160*GeV* に なったときには、 $H \rightarrow WW$ への分岐比が 100% になる。

図 2.5: ATLAS のヒッグス発見能力

2.3 ATLAS 検出器

ATLAS 検出器は、直径 22m、長さ 46m、総重量約 7000 トンという巨大なものであり、欧州・ 米国・日本など全世界 33ヶ国から約 1700 人以上の研究者の合同チームによる国際共同実験とし て建設されている。ATLAS 検出器は LHC の最大ルミノシティーにおいても、e、 γ 、 μ 、jet、 missing E_t 、b-tagging などできるだけ多くのシグナルをバランスよく確実に取り出せるよ うな設計がなされている。ATLAS 検出器の内側から、内部飛跡検出器、ソレノイド磁石、電 磁力ロリメータ、ハドロンカロリメータ、ミュー粒子検出器が設置されている。

図 2.6 に ATLAS 検出器の全体図を示す。

以下、それらの検出器についてそれぞれ述べる。

内部飛跡検出器

内部飛跡検出器は ATLAS 検出器と比較すると非常に小さいが、直径 2.3m、長さ 7m の 大きさである。この測定器の目的は、荷電粒子の飛跡認識、運動量測定、反応点測定、及 び電子識別である。衝突点にもっとも近い位置に設置され、内側から高分解能測定器群と して、3 層からなるシリコンピクセル検出器 (Pixel)、4 層からなるシリコンスマイクロ ストリップ検出器 (SCT:Semiconductor Tracker)、その外側に連続的にサンプリングす る飛跡検出器である遷移輻射検出器 (TRT:Transition Radiation Tracker)を置いている (図 2.7)。

ピクセル検出器は一つ一つのピクセルが $50\mu m \times 300\mu m$ の非常に小さな検出器であり、粒 子密度の最も高いところに置かれ、その粒子密度の高さに応じた精度をもつことにより、 荷電粒子のトラックを検出し精密に反応点測定を行なう。SCT は $23\mu m$ の位置分解能を もち、精度の良い飛跡情報を与える。4 層のバレルシリンダーと前後 9 層のエンドキャッ プディスクで、 $-2.5 < \eta < 2.5$ の読み出し領域をカバーし、シリコンセンサーの読み出し面 積はバレルで $34m^2$ 、エンドキャップで $27m^2$ である。また。シリコン面はシリコンマイク ロストリップセンサーと読み出しエレクトロニクスから作られる「モジュール」と呼ばれ る単位の検出器が使用されている。遷移輻射検出器は、小径 4mm のストロー検出器を 多数層積層することによって構成されている。電子などの識別を行なうため、遷移放射を 引き起こす物質がストロー検出器の間に挿入されている。さらにその外側に2 T の超伝 導ソレノイド磁石を設置することによって先にも述べた運動量測定が可能となる。内部測 定器の大きな問題点は、これらのいずれの検出器も衝突点に近いことから厳しい放射線 下に置かれていることと、カロリーメータで発生した中性子が内部測定器に戻ってくる アルベルト中性子などによる放射線損傷である。またストロー検出器は 15*MHz* もの高 計数運転に耐えなければならない。しかし、これらについての対策は精力的に行なわれ、 解決法はほぼ確立されている。

図 2.7: インナー・ディテクター

図 2.8: (左) インナーディデクターバレル部 $r\phi$ 方向のシミュレーション (右)SCT バレル部の拡大図

図 2.8 にインナー・ディデクターの $r\phi$ 断面のシミュレーションの図を示す。図中の円が 飛跡検出をするそれぞれの層を表している。図の右側は Pixel 検出器と SCT 検出器の部 分を拡大したものである。SCT 検出器において、図の緑色はそれぞれの検出器をサポー トするものであり、赤い小さい丸で示しているのはパワーケーブルとクーリングのための ものである。ピンク色はシリコンセンサーを表しており、青色は読み出しボードである。 また、図 2.9 に 2T の磁場環境における $p_t = 500 GeV$ の荷電粒子に対して期待される運動 量分解能を示す。低い p_t で significant が低いのは、半径の大きいところで複合散乱が測 定の効率を下げ、全体の分解能を制限するからである [1]。

図 2.9: インナー・ディテクター

電磁カロリメータ

電磁カロリメータは、電磁シャワーを起こさせて、 $|\eta| < 3.2$ の広範囲の入射電子・ 線のエネルギーと位置の測定を行なう検出器である。耐放射線にすぐれており、安定性の よい液体アルゴンカロリメータが使用されている。電極及び鉛吸収体を入射粒子に対し て横方向にジグザグさせるアコーディオン型にすることにより、読み出しに伴う浮遊容量 を最小にする。さらに、ジェットと電子の識別をよくするために、横方向 (η, ϕ) にセルが 細かく分けられ、また縦方向にも数段分けられるという工夫がなされている。初段部の 前には同じ形状のサンプラーを置き、電磁シャワーの角度測定とエネルギー補正、及び、 π^0 と γ の識別に用いている。 ハドロンカロリメータは陽子や π やK 中間子などのハドロンのエネルギーを測定する測定器である。このカロリメータはカバーをする領域によって、前後方の液体アルゴン・カロリメータ、バレル部のタイル・カロリメータの3種類のタイプに分かれる。 $|\eta| < 1.7$ のバレル部は、鉄の吸収体とタイル状のシンチレータ及び波長変換ファイバーからなるタイル状カロリメータであり、一方エンドキャップ部である $1.5 < |\eta| < 3.2$ の領域は放射線強度が高いので、銅吸収体と液体アルゴンの組み合わせのカロリメータを用いている。 セルあたりの容量が大きくなるので、電気的にみて小さくなるように静電変圧構造の電極を採用している。 $3.2 < |\eta| < 4.9$ のフォワード部は粒子が混みあうので、ハドロンシャワーの横広がりを最小にするために吸収体にタングステンを用いている。また、フォワード部はさらに放射線強度が高いために、媒体は放射線に強い液体アルゴンを用いている。

超伝導ソレノイド

ATLAS では2 Tのソレノイド磁場を内部飛跡検出器にかけて、荷電粒子の運動量測定を 行なう。磁場のリターンヨークとしては、タイル型ハドロンカロリメータを吸収体に用い る。コイルは電磁カロリメータの内部に置かれているので、*e* や γ に対するエネルギー 分解能を悪くしないように物質量をいかに少なくするかが最大の課題であるといえる。そ のために、ソレノイドとバレル部液体アルゴンカロリメータの真空容器を共有している。

µ 粒子検出器

µ粒子は、LHC実験においてほとんどすべての重要な物理に関わっており、しかもカロ リメータの中で反応することなく外までつき抜けてくるために、LHCの非常に厳しい実 験環境の中でもきれいな信号を取り出すことが可能である。したがってµ検出器は測定器 の一番外側に設置されている。ATLASでは、stand-aloneでもµ粒子の測定を精度良く行 なえるように、空芯の超伝導トロイド磁石を使用している。これは多重散乱の効果を最 小に抑えることができ、さらにµ粒子の測定可能なラピディティー領域を広くとることが できるので、内側の測定器と独立させることができるという利点もある。µ粒子検出器 は精密位置測定用にMDT(Monitored Drift Tube) とCSC(Cathod Strip Chamber)で、反 応の種類を見極めるトリガーとして、RPC(Resistive Plate Chamber) とTGC(Thin Gap Chamber) から成っている。

DAQシステム

LHC では陽子衝突が毎秒 10 億回起こり数百億個の粒子が作られる。実験装置にセット された1千万チャンネル以上(シリコン検出器のみで 640 万チャンネル)の粒子検出器は、 発生する2次粒子の飛跡とエネルギーを測定して電気信号に変換する。重要なイベント のデータのみが瞬時にオンライン選別されて計算機に送られる。蓄積されるデータ量は 10¹⁵ バイトにのぼる。測定は日本で発明された TMC 回路により微小時間間隔 20ns の精 度で連続でなされる。0.5µmCMOS 技術が使われており、9mm 角のチップに約 30 万個の トランジスターが組み込まれている。

トリガー・データ収集システム

LHC の最高ルミノシティーでは、各ビーム交差毎(25ns)に平均20個のイベントがオー バーラップして発生する。測定器からのデータは膨大なものであり、興味あるイベントを 効率よく選別、収集する必要がある。そのためにATLASでは3段階のトリガー・システ ムを採用している。

- レベル1…トリガーのための信号が各測定器サブシステムで処理された後、全体の トリガー決定回路へと送られ、そこでイベントをアクセプトするかどうかを 25ns 毎に判断される。ここまでの 2µs の間、それぞれのサブシステムのデータは、パイ プラインに保持されている。
- レベル2…RoI(Region of Interest)と呼ばれる、トリガーを生じた測定器内の地点を 含む一部の領域のデータのみが判定に使われる。
- ・レベル3…イベントビルダーにより、各測定器のサブシステムからのデータがイベント毎にまとめられ、数百台のコンピュータに振り分けられる。そこでそれぞれ独立に解析され、ソフトウェアによるフィルタリングが行なわれる。ここにおけるデータ転送レートは毎秒1Gバイトを越えると予想されるので、非常に大規模なネットワークのスイッチが必要になる。このようにして選別されたイベントのデータはさらに下流のネットワークを通じて記録装置に送られる。

第3章 シリコンマイクロストリップ検出器

3.1 シリコンセンサーの動作原理

ここでは、2.3節で紹介したインナー・ディテクターの3つの検出器のうちの1つ、シリコン マイクロストリップ飛跡検出器について説明する。

純度の高いシリコンの結晶は電気をほとんど通さないが、結晶中に不純物を混ぜることによっ て電気伝導性は急激に上昇する。したがってSCTでは、シリコンウエハーの片面にのみ不純物 (ホウ素)濃度の高い p型シリコンをストリップ状に埋め込んでおり、アルミニウムとSiO₂の 絶縁幕をはさんでAC結合している。このときの不純物濃度は、シリコン10¹³原子/cm³で約 500Ωcmの比抵抗に相当する。一方の面には、逆バイアス電圧を加えるための電極用として n 型高濃度シリコン層が全面に形成されており、結晶の片面にはアルミニウムが蒸着されている。

図 3.1: シリコンマイクロストリップ構造

ストリップ側に負の電圧を加えることにより生じた電場によってn型シリコンウエハー中の キャリアを電極に移動させ空乏層をつくる。この状態でシリコンセンサー中に荷電粒子が通過 すると、電子・ホール対が形成され、これらは逆バイアスの電場により電極に集められる。こ のときの電子の速度は10⁷ cm/s 程度であり、0.1cmの距離にわたってキャリアを収集するのに 必要な時間は10ns以下である。信号を出力したストリップの位置から荷電粒子の位置を一次元 的に決定することができる。

図 3.1 にシリコンマイクロストリップの断面図を示す。

3.2 放射線損傷

シリコン半導体検出器は、エネルギー分解能が優れている上に、小型化可能、かつ比較的早 いタイミング特性を示すという利点を持っているが、欠点として放射線損傷による性能の劣化 を起こしやすいことがあげられる。これは、シリコン結晶を通過した放射線の破壊効果によっ て格子に損傷がもたらされることによる。

放射線損傷の中でもっともよくみられるものはフレンケル欠陥であり、半導体物質の原子が その正常な格子位置から変位して作られる。フレンケル欠陥とは、正規の位置の原子が欠けた ものを「空格子」と呼ばれる点欠陥、構成原子が余分に正規の位置の間に割り込んだものを「格 子間原子」としたときに、この2つが対で形成されたときのことをいう(図3.2)。入射粒子によ り生成されたキャリアを捕獲し、電荷収集効率を低下させる。また、電荷キャリアを収集する ためにかける数100Vのバイアス電圧を必要とするが、電離性放射線がない場合でもわずかな 電流が観測される。これを漏れ電流と言うが、この漏れ電流中に必然的に生じるランダムなゆ らぎが多くの場合ノイズの原因となる。しかも、これは放射線損傷によって増加し、増加した 漏れ電流は熱を引き起こす。さらに熱はまた漏れ電流を誘発するといった熱暴走を起こしてし まう。

ATLAS検出器において、SCTバレルモジュールはビーム衝突点に近いところから順に300mm、 370mm、450mm、525mmと設置されるので、10年間の実験期間で3×10¹⁴particle/cm²の放射 線を受けてしまうと予想されている。したがって、先述した漏れ電流の熱暴走を抑えるためと 反アニーリング効果を遅くするために、実験環境は10年間をとおしてマイナス7°C未満に保た れることが要求される。

図 3.2: フレンケル欠陥格子

3.3 バレルモジュールとエンドキャップモジュール

インナーディテクターに使われる SCT モジュールにはバレルモジュールとエンドキャップモ ジュールの2種類がある。図 3.2 にそれらの2つのモジュールを示したが、ビームテストには 写真のような容器にモジュールは固定され、プラスチックの窓をつけた上で実際のビームライ ンに設置された。

図 3.3: (左) バレルモジュール (右) エンドキャップモジュール

バレルモジュール(図 3.3(左))はストリップ幅 $16\mu m$ 、ストリップ間隔 $80\mu m$ で、スト リップは全部で 768 ストリップある。シリコンセンサーの大きさは $63.96mm \times 63.96mm$ で、 厚さは $285\mu m$ である。このウエハーを 2 枚つなげて 12cm のストリップ長とする。シリコン ウエハーは先にも述べたように、このままでは荷電粒子の通過位置を一次元的にしか決定でき ないので、このシリコンウエハをさらに 2 枚、ステレオ角 40mrad の角度をつけてベースボー ドの表裏から接着することによって、荷電粒子の位置を 2 次元的に決定することができる。バ レルモジュールの構造を図 3.4 に示す。また、シリコンセンサーの仕様を表 3.1 に示す [13]。

読み出しエレクトロニクスは、ATLAS、SCT 用の ASIC として作られた放射線耐性に優れた ABCD3T チップを使用しており、このチップをシリコンセンサー4枚分で計12個をフレック スハイブリッド基板に搭載している。このフレックスハイブリッド基板はシリコン面を橋渡す ようにして巻かれている(図3.5)。読み出しの ASIC などの電気回路とは反対の面に接着されて いるカーボンカーボンによる伝熱基板は、ベースボードに備え付けられたベリリアの補強板に 接着されている。前節で述べたように、シリコンセンサーの暗電流による熱暴走を起こさない ようにシリコンセンサーや ASIC からの熱を効率よく取り除くために、このようなモジュール 化が適用された[18]。また、ABCD3T チップはチップ当たり 128 チャンネルのストリップ信号 を読みとる。また、LHC のバンチ衝突が 40*MHz* であるのに対して、このチップは 50*MHz* のクロックでも作動することが可能である.

一方、エンドキャップモジュール(図3.3(右))の方は、前後方に円盤上に設置されることか ら、形状は台形のシリコンウエハーをしている。また、設置される場所によって3種類の異な

図 3.4: SCT バレルモジュールの構造

るサイズがある。読み出しストリップの数やチップの数はバレルモジュールと同じである。 また、LHCにおける陽子陽子衝突の頻度は25*ns*毎にあり、その度に数百億個の粒子が生成 されるので、大量のデータを高速で取り扱わなければならない。そのため、SCTでの信号の読 み出しは、各チャンネルに対してある閾値を決め、それを越えたものを1、越えないものを0と するバイナリー読み出しを採用している。

図 3.5: チップを搭載したフレックスハイブリッド基板

センサーのタイプ	p-in-n 型、AC カップリング、一面読み出し		
厚さ	$285~\pm~15~\mu m$		
サイズ	$63.6 \text{ mm} \times 54.0 \text{ mm}$		
バルク	n タイプ (抵抗:4kΩcm)		
ストリップタイプ	p ⁺		
ストリップピッチ	$80 \ \mu m$		
ストリップ幅	$16 \ \mu m$		
ストリップ数	768 ストリップ		
ストリップ AC カップリング	$SiO_2 pF/cm$		
interstrip 容量	1.5pF/cm (350V、100kHz)		
初期空乏電圧	150V		
ステレオ角	40mrad		

表 3.1: シリコンセンサーの主な仕様

3.4 ABCD3Tチップ

ここでは、先に述べた読み出し用のチップである ABCD3T チップのバイナリー読み出しの 原理について触れる [6]。

ABCD3TのデザインのベースはABCD2Tプロトタイプチップである。構造やコアな部分の 全ブロックに変更はされていないが、放射線に十分耐える新しいデザインに改良された。

バイナリー読み出しを採用している SCT のチップは、1つで128ストリップ分の信号の処理を賄わなければならない。そのチップの簡単なブロック図を図3.6に示す。主な機能ブロックは、フロントエンド、入力レジスタ、パイプライン、読み出しバッファー、コマンドデコーダー、読み出しロジック、スレッショルドとキャリブレーションコントロールである。

128 ストリップからの入力信号は、まずフロントエンドブロックでアナログ信号からデジタ ル信号に変えられる。ここでは、まずプリアンプによって信号は増幅され、その信号の波形は 整形される。この後、コンパレータによってノイズと信号が分離され、次のブロックへ渡され る。次のブロックには入力レジスタとマスクレジスタがある。入力レジスタは入力データを受 け取り、パイプラインに一定幅のパルスを渡すものであり、マスクレジスタは悪いチャンネル やノイズの大きいチャンネルを使わないようにして、必要のないデータ量を減らすことができ る。さらに、マスクレジスタはパイプラインテストのときのテストパルスを送信することもで きる。

パイプラインは、128 チャンネル分のデジタルパイプライン、FIFO 回路で構成されている。 FIFO は'barrel store' という手段をとっており、これは書き込みポインタと読み込みポインタ の2つの循環型ポインタによりアドレスされるものである。LHC 実験ではバンチ衝突間隔が 25ns なので、高速での信号処理が要求される。その際、まず一旦トリガーされたシリコンの 情報がパイプラインに蓄積され、その後電磁カロリメータや μ 粒子検出器で意味のあるイベン

図 3.6: ABCD3T チップのブロック図

トとされたイベントのみを読み込み、それ以前に蓄積された情報は消去されるといった仕組み である。書き込みポインタは読み込みポインタを追い越して上書きすることができ、そのとき は'Overflow flag' がセットされる。逆に、読み込みポインタは書き込みポインタを追い越すこ とはできず、もし追い付いたときには、'EMPTY flag'がセットされる。これにより、データの ないときにバッファーを読み出そうとするのを防ぐと同時に情報の高速処理を可能とした。

データ圧縮ロジック

データ圧縮ロジックは、それぞれのイベントに対してチップの読み出すデータのビット数 を減らすために使われている。データ圧縮ロジックは、それぞれのチャンネルに対して順 番に3ビットのデータのヒットパターンをつくる。それぞれの3ビットのグループは4つ の選択肢と比較され、パターンが基準に合ったとき、チャンネルからのヒットパターンは 読み出し回路に送られる。もしそうでなければ、チャンネルから送られてくるデータはな く、次のチャンネルからのヒットパターンを考える。この過程は、全128チャンネルから のヒットパターンが存在する限り繰り返される。 以下に、その4つの選択されるモードを示す。

モード	選択基準の名前	ヒットパターン	使用例
00	Hit	1XX or X1X or XX1	検出器のアライメント
01	Level	X1X	通常データテイキング
10	Edge	01X	通常データテイキング
11	Test	XXX	テストモード

(Xは'0'か'1'のいずれか)

データ圧縮ロジックは、データ選択基準とマッチするヒットパターンを持つものが見つかるま で順番に全チャンネルを通してスキャンを始める。もしそのようなヒットパターンが見つかった ら、'datavalid'信号とチャンネルアドレスを送る。このロジックは、読み出しロジックが'next' 信号を出すまで待っている。もし次のヒットが隣りのチャンネルなら、'adj'信号が前のチャン ネルより送られてくる。ヒットがなくなりデータの最後には、'end'の信号を送ることで、その チップから読み出すべきデータが最後であることを知らせる。

以下の3つの場合

- チップが SEND_ ID モードのとき
- 読み出しバッファーに'error flag' がセットされたとき
- 読み出しバッファーに'overflow flag' がセットされたとき

データ圧縮ロジックは読み出しバッファーからデータを送る必要はないが、読み出しバッファーからこの情報を送り出すためにバッファーから3ビット分読み出す必要がある。

第4章 ビームテスト

4.1 セットアップ

ビームテストは 2003 年 5 月に、CERN の H8 施設で行なわれた。使用したビームは、まず SPS(Super Proton Synchrotron) リングを用いて陽子を 400GeV/c まで加速させターゲットに あて、生成された 2 次粒子である π^+ をベンディングマグネットにより 180GeV/c に選別さ れたビームを使用した。使用したモジュールについては表 4.1 に記す。ここでいう補正値とは、ビームテスト前のキャリブレーション段階における、それぞれの SCT モジュールの厚さの補正 である。シリコン検出器は、同じ荷電粒子が通過しても、その厚さに比例して生成される電子・ホール対の数が変わってしまうため、厚さの違いによる出力信号の大きさの差をなくすための この補正は解析の際に必要である。また、DAQ 番号 10 は *reference* モジュールと呼ばれ、わ ずかにタイミングをミスしている SCT モジュールをテレスコープのコインシデンスを調整す るためのもので、実験の間は常に閾値(以下、スレッショルド)は 1.0fC、バイアス電圧は 150V に設定されている。

図 4.1: セットアップ図

モジュール	タイプ	DAQ 番号	補正値
K5_312**	エンドキャップ	0	1.113
20220330200003**	バレル	1	1.051
K5_303*	エンドキャップ	2	1.171
20220170200153**	バレル	3	1.060
$K5_{503**}$	エンドキャップ	4	1.030
20220040200018	バレル	5	1.027
K5_310*	エンドキャップ	6	1.095
20220170200447	バレル	7	1.089
$K5_{504**}$	エンドキャップ	8	1.030
K5_306	エンドキャップ	9	1.095
20220170200010	バレル (reference)	10	1.089
K5_513	エンドキャップ	11	1.040

表 4.1: 使用したモジュールの種類

今回のビームテストに用いた SCT モジュールは計 12 枚。そのうちバレルモジュールで放 射線被曝 10 年分の 3×10^{14} particle/cm² を与えたものが 2 枚、与えていないものが 4 枚の計 6 枚、エンドキャップモジュールのうち、放射線被曝を 10 年分与えたものは 3 枚、5 年分の 1.5×10^{14} particle/cm² を与えたものは 2 枚、与えていないものが 1 枚で計 6 枚である。以下、図 においてアスタリスク(*)のついているものは放射線損傷を与えたものを表し、それぞれ 2 個 は 10 年分、1 個は 5 年分とする。これらの SCT モジュールのセットアップの図を図 4.1 に示す。 また、今回の放射線被曝は CERN 内にある PS(Proton Synchrotron) 施設で事前に行なわれた。

ビームはまず最前に置かれたシンチレータ・トリガーカウンターを通過する。トリガーは、2組 のシンチレータを $1.5cm \times 1.5cm$ ずつ重ねて、その領域を通過した π^+ ビームのみ採用とした (図 $4.2(\pm)$)。その後、同じシリコン検出器からできているテレスコープを2枚通過した後、SCT モジュールがセットされているメインボックスを通過、最後に前方に置かれたものと同じシリコ ン検出器で作られたテレスコープを2枚通過する。このテレスコープは、面積 $3.2cm \times 3.2cm$ でSCT モジュールと比較すると小さいが、ビームスポットのサイズ $0.5cm \times 1.0cm$ と比較する と、十分な大きさである。さらに、 $5\mu m$ の非常によい位置分解能を持ち、これを2枚 90° ず らして配置することにより、通過した荷電粒子の2次元情報を得ることができる。テレスコープ は解析に使うSCT ヒット情報の選別の際に非常に大事なものである。詳細は後でふれる。メイ ンボックス内のSCT モジュール間隔は 90mm、基本的にはバレルモジュールとエンドキャップ モジュールは交互に設置されている。したがって、バレルモジュールどうしの間隔は 90mm、 10年分、及び5年分の放射線損傷を与えたエンドキャップモジュールどうしの間隔は 180mmということになる。この理由としては、本番のLHC実験におけるバレルモジュールの設置間隔

図 4.2: (左) シンチレータトリガー (右) メインボックス内部

は 73*mm*、エンドキャップモジュールは 188*mm* であり、この間隔にできるだけ近付け、本 番に近い状態でのトラッキング情報を得ようとするための試みである。

メインボックス内に設置されている SCT モジュールは、3章、図 3.3 に示した通りである。 SCT モジュールが固定されている容器の右側についている一番上のチューブはドライ窒素ガス を入れるためのもので、これは温度差により容器内部の結露を防止するためのものである。ま た、下2つのチューブは冷却用のものである。冷却する理由としては、3.2 節ですでに述べた。 冷却は3つのチラを使用した。2つのチラで分担しモジュールを冷却し、もう1つのチラでメ インボックス内を冷やした。チラの温度は実験中はマイナス20度にセットした。実際のメイン ボックス内部の写真を図 4.2(右) に示す。ビームは向かって左から右に行っており、写真上部の ケーブルは SCT モジュールそれぞれに対する読み出しケーブルとパワーケーブルである。

図 4.3 は、メインボックス及びテレスコープがマグネット内にスライドさせたときのもので ある。マグネットの直径は約160cm、磁場は最大 ~1.5T(~5000A)かけられ、磁場の向きは 向かって上から下向きである.インナーディテクターの外側にはソレノイド磁石が設置される ことはすでにふれた。この磁場の向きは、エンドキャップモジュールに対して本番と同じ向き に磁場がかかるようにと考慮されたものである。

図 4.3: マグネット内のメインボックス

4.2 読み出し

今回のビームテスト期間中に、本番のLHC 実験と同じバンチ衝突間隔の 40MHz に相当する 25nsのビームも出した。これは、SPS リングにおいて 43kHz の軌道周波数を持つ。この 40MHzのバンチクロックは、LHCのTTCシステムというものを経由して加速器のコントロールから H8 ビームライン内のSCT トリガーやコントロールロジックに使われる NIM レベルに 変換される。この 40MHzのバンチクロックは、CLOAC(Clock and Control module) の外部クロック入力を経由してSCTシステムを動作させたり、SLOG(slow command generators) によって detector module に分配されたりする。これは、synchronicity の読み出しクロックを保証するシステムであり、その任意の位相遅延は cable delay によって調整されている。

図4.4に、そのバンチ構造、ビーム軌道カウンターとビームトリガーの関係を示す。

43kHz のビーム軌道シグナルは、CLOAC の外部 BC(a Bunch Crossing Counter) Reset 入力 を使って BC Reset コマンドをモジュールのフロント・エンド ASICs に送信するトリガーとし て使われている。粒子のバンチの列はいろいろな遅延をもってやってきているので、トリガー・ シンチレータからのそれぞれのコインシデンスは、ABCD チップのパイプラインに対して補正 をするためにいろいろな遅延を加えた後で Level 1 Accepts(L1As) の CLOAC によって送信を 行なう。最後の BC Reset 後からのバンチ交差の数や L1As の数がそれぞれのイベントに対し て ABCD チップ内でカウントされ、ABCD ヘッダー内に組み込まれる。この情報は、イベン

図 4.4: バンチ構造とその読み出し

トのタイムスタンプを形成したり、SCT モジュールやテレスコープからのバイナリー読み出しの synchronicity を確実なものにするオフライン時に使われる。

図 4.5 は今回のビームテストの読み出しに使われた NIM の写真である。左の写真は、シンチ レータトリガーからシリコン検出器間の時間を測る TDC、テレスコープの読み出しをそれぞれ 行なうモジュール、SLOG、CLOAC、SCT モジュールの読み出しを管理し、メモリーを行なう MuSTARD のモジュールである。SLOG と MuSTARD は 1 つでそれぞれ 6 つ SCT モジュール を管理することができる。右の写真は、SCT モジュールの読み出しを担うハイブリッドの動作 をさせるためにかける Low Voltage(LV) と、全空乏化をさせるためにシリコンセンサーにかけ る High Voltage(HV) のモジュールである。この LV モジュールは 1 つで 2 つの SCT モジュー ルを、HV モジュールは 1 つで 4 つのモジュールを負担している。

図 4.5: (左)CLOAC、SLOG のモジュール (右)HV と LV のモジュール

asynchronous ビームテストのときは、シンチレータからのトリガー信号から分かる粒子の到着とクロック間のランダムな遅延は、高い分解能をもつ TDC(a Time to Digital Converter) に

よって定期的に測定される。この TDC の情報は、offline 時の解析で波高分布のピークをサン プルするときの時間間隔を選別するときなどに使われる。図 4.6 はシンチレータ・トリガーと システムクロック間の遅延を asynchronous beam の時と synchronous beam の場合を TDC で測 定した分布を表している。TDC は 1*ns* 毎にカウントしている。この分布は、バレルモジュール 0018 のもので、スレッショルドは 1.0fC、バイアス電圧は左は 150V、右は 200V かけたもので ある。完璧な synchronous beam の時、分布はデルタピークになるのに対して、今回のビームテ ストにおける synchronous beam は右図でも分かるように、非常に狭い幅のピークを持ってい ることが分かる。このピークの幅は 1*ns* のオーダーであり、非常に質の良い synchronous beam がでていたことが分かる。

図 4.6: (左)Asynchronous beam (右)Synchronous beam の TDC 出力

第5章 解析方法

今回の解析には、近年のSCTビームテストにおいて、オンラインの解析及びその後の精密解析 を主に担当している、バレンシア解析グループの使用している解析方法を用いた。従来のビー ムテストの解析には、アライメント作業やその他データエラーのチェックなどの手間がかかっ ていたが、この解析方法では新しく DST フォーマット というものを導入することによって、 これらの手間を省くことができる [3]。このDST フォーマットは、オフライン時にビームテス トの生データをもとに改めて解析用に作られるものである。以下、このDST フォーマットにつ いて述べる。

5.1 DST フォーマット

解析に用いる DST ファイルには、DST TTree、runInformation、aligns の3つのオブジェ クトが含まれており、この DST ファイルに存在する'DST event'は、実際のビームテストのイ ベントに対応するものである。実際の解析には ROOT を用い、その際 C++ プログラミング で書かれたマクロを ROOT 上ではしらせることになる。

まず、*runInformation* にはそれぞれのイベントのランナンバー、スレッショルド、バイア ス電圧などのデータパラメータの情報を含んでいる。そして、DST フォーマットの最大の特徴 である *DST TTree* は、あるイベントそれぞれに対して。図 5.1 のようにいくつかのブロック に簡単に振り分けられる。

まず、初めのブロックにはイベントの変数が含まれている。例えば、生データにおけるイベ ントの総数 (EventNo)、TDC のイベントカウンター (tdcCnt)、テレスコープのイベントカ ウンター (iramCnt)、また OKFlag とはフラッグが 1 にセットされた場合いわゆる'よい' イベントということを指し、それに対して NoiseFlag とはビームイベントかノイズイベント かを指すものである。

次のブロックは、あるシングル SCT モジュールにおける全クラスターに対する情報がそれぞれ含まれている。それぞれのクラスターは3ビットで1クロックサイクルの情報を与える。そのクロックサイクルを越える信号は、異なるタイムビンを持つ2つの離れたクラスターとして認識される。クラスターの場所を表すチャンネルは、そのクラスターを構成する最も小さいチャンネルで決定される。またブロック中の *Xlocal* とは、クラスターの中心とその面のストリップ 0 の距離を表す。以上のことは次のブロックのテレスコープにも言える。

また、それぞれのイベントのトラックは4枚のテレスコープのヒットによって再構成される。 そのトラックについては最後のブロックに含まれている。トラックフィットの良さを表す χ²

図 5.1: DST TTree の構造

は、ノイズヒットや多重散乱などによるヒットから再構成されるトラックを除去するために使われる。

このようなトラックを再構成する前の推定段階において、それぞれのモジュール面に対して 高精度なアライメントをしなければならない。そのために DST ファイルを構成する最後のオブ ジェクトである *align* が必要となってくる。この *align* を用いてアライメントされたもので、 実際の ROOT での解析に使う dst file がそれぞれの run に対して作られる。

5.2 イベント選別

解析を始める前にまずするべきことは、解析に用いるイベントの選別である。それにはまず、 SCT モジュールからのバイナリー情報が解析用イベントとして使えるかを選別する必要がある。 その選別方法は、以下の条件を満たすことである。

• テレスコープで正確なトラックを再構成している

この条件を課すことによって、テレスコープからはずれたものや2次トラックを除去する ことができる。

ある制限内で、まっすぐかつビーム軸に平行なもの
 この条件は、メインボックスよりも前にビームライン上に置かれたその他の物質によって
 生じた多重散乱のトラックを除去することができる。

• 少なくともアンカーモジュールの一面が efficient なもの

この条件は、synchronicity などでデータが壊れてしまったものを除去できる。ここでいう efficient とは、アンカーモジュールの OKFlag が 1 であるときのことをいう。

テレスコープで8個以下のヒットがあるもの
 この条件は、ビームライン上の他の物質によって生じた second charged track による hard interaction の効果を減らすことができる。

以上の条件でカットされるイベントはもちろん少ないのだが、'fake'トラックを確実に作り、 除去している。このようにして選別されたイベントが解析に使われる。

5.3 位置分解能について

前節のようにして選別されたイベントを用いて、シングルSCTモジュールの位置分解能をも とめる。まず、ストリップ間隔 $80\mu m$ のシリコンストリップ検出器の期待される位置分解能に ついて考える。今、図 5.2のようにピッチ間隔を p、ある任意のストリップの位置を μ とする。 この時、それぞれのストリップの信号読み出し確率はストリップを中心として $\pm \frac{p}{2}$ の範囲で 一様である。

図 5.2: 位置様分布の標準偏差

この一様分布にガウスフィットをしたときの標準偏差 (*σ*) が理想的な位置分解能であり、式 は次のとおりである。

$$\sigma^2 = \frac{\int_{-\frac{p}{2}}^{\frac{p}{2}} dx (x-\mu)^2}{\int_{-\frac{p}{2}}^{\frac{p}{2}} dx}$$

このとき簡単にするために $\mu = 0$ とすると、 $\sigma = \frac{p}{\sqrt{12}}$ となり、 $80\mu m$ のピッチ幅で、一様分布の場合の期待される位置分解能は $\sim 23\mu m$ となる。

5.3.1 residualの定義

実際の SCT モジュールの位置分解能は、residual マップというものより得られる。residual マップとは、4枚のテレスコープから再構成されたトラックと SCT モジュールのバイナリー読み出し情報と比較することによって作られる。以下、その手順を示す。

- 4 枚のテレスコープのヒット情報よりトラックを再構成する (4.3.2 節)。
- テレスコープによって作られたトラックのSCTモジュールの通過位置と、実際のSCTモジュールのバイナリー読み出しによるヒット位置との差をマップする (residual マップ)。
- 得られた residual マップにガウス・フィットを施し、σ の値、つまり位置分解能の値を 得る。

図 5.3 にその概念図を簡単に示す。

図 5.3: residual の定義

図は、ある任意のシングルSCTモジュールにテレスコープの作ったトラックが通過していることを示している。赤いバツ印はトラックの通過した点、青いバツは実際にSCTモジュー

ルのヒットした点を表している。residual はその2つの点の差のことをいう。シングルSCTモ ジュールは先述したように1次元読み出ししかできないので、この差は直線距離ではなく、ヒッ ト情報のあったストリップの差ということになる。図中のrが実質のresidualの値になる。こ のresidualの値は、テレスコープから再構成されたトラックとSCTのヒット位置との差である ので、テレスコープのエラーは含まれていない。この差が 150 μ m 以内(テレスコープのスト リップの3ピッチ分の長さに相当)、OKFlag = 1、 $NoiseFlag \neq 1$ 、かつ、SCTバイナリー 読み出しが完全なトラックを形成したときのみ、そのイベントは検出効率をもとめるときのよ うな解析に用いられる。トラック選別については 5.4 節で詳しく述べる。

5.3.2 クラスターの扱い

クラスターとはビームが1度通過する際に、複数のチャンネルが信号を出すことをいう。仮 にこのクラスターの幅が大きい場合、位置分解能が悪くなっていしまうことは用意に想像でき る。したがって、位置分解能を議論する前にクラスターについての評価をする必要がある。

図 5.4: クラスターマップ (K5_312**)

図 5.4 は、エンドキャップモジュール (K5_312**) で、スレッショルド 1.0fC、バイアス電圧 は 350V でスキャンしたときのクラスターマップである。横軸はクラスターのストリップ数、縦 軸は頻度をあらわしている。グラフからも分かるように、2 つ以上のストリップが信号を出す ものもいくらか存在することが分かる。これは、ビームが2 つのストリップのちょうど真ん中 を通過した時に2 つのストリップが信号を出すものの他に、ビームライン上の SCT モジュール よりも前方に設置された他の物質 (例えばテレスコープなど)によって生じた多重散乱による影 響であると考えられる。しかし、2 つ以上のストリップが信号をだすものは 5% 以下であり、 また他のモジュールに関しても同じ結果が得られた。したがって、位置分解能の精度のクラス ターによる影響は十分無視できる値といえるので、以下、クラスターについてのカットは行な わずに解析を行なっていく。

5.4 トラック選別

この節では 5.3.1 項でふれたように、検出効率などの解析に用いられるトラックの選別方法 について述べる。

トラックを再構成するには、まず40mrad ずらした2枚のモジュールのヒット情報を組み合わせてX、Y座標をもとめなければならない。その前に、トラックを決める際のグローバル座標系を定義する必要がある。

X軸、Y軸の定義

図 5.5 は、2 つのストリップ間隔 80 μ m のストリップが、ステレオ角 40mrad (図では α) で 交差して、短辺 $\frac{p}{\cos\frac{\alpha}{2}}$ 、長辺 $\frac{p}{\sin\frac{\alpha}{2}}$ のひし形を作っている図を表している (ただし、 pはストリップピッチ 18 μ m)。

このひし形の短軸をグローバル座標のX軸、長軸をグローバル座標のY軸とする。

図 5.5: X 軸、Y 軸の定義

このようにして定められた X、Y 軸に対して、全ての SCT モジュールからのバイナリー情報 からのみの情報からそれぞれの X、Y 座標点が決定し、要求された数の座標点が作られた時に 初めてトラック候補が作られる。そのトラック候補の χ^2 がある値よりも小さかった時に、そ の候補トラックは解析用のトラックとして受け入れられる [5]。

以下、例を示しながらトラック選別の定義を明確にしていく。

例

以下の4つの例は典型的なイベントである。ビーム軸をZ軸として、それぞれの例に対してXZ面とYZ面について示している。図中の青い長方形はテレスコープ、黒い長方形は

SCT モジュールの XY の位置を示しており、長方形のサイズは位置のエラーを表している。SCT モジュールのヒットから再構成されたトラックは直線で描かれてある。

例1

これは、テレスコープとSCTモジュールからシングルトラックが検出された例である。ノイズやその他の不適切なヒットが一つもなく、非常にはっきりした完璧なトラックが再構成されている。

例 2

この例はスレッショルドを低く設定され、ノイズによって不適切なヒットが多く存在するときのものである。図は、正確に再構成されたトラックを除いて、1つの適切なヒットと3つの不適切なヒットから再構成された'fake'トラックを表している。

• 例 3

これは例2と違って、本物の粒子がトラックを形成している例である。トラッカーの 内部で相互作用を起こしているという非常に稀なものである。π⁺ ビームの衝突が原 子から電子をたたき出して、本物の2次トラックをつくり出している。しかし、この 2次トラックはテレスコープを外れているので、解析段階で除去することができる。

これも、本物のトラックが2つ平行に存在するときの例である。この場合のトラックの見分け方は、z=0(一番前方に設置されているテレスコープの位置)に注目すると、2次トラックはテレスコープを外れているので、テレスコープはこれらのうちの 片方のみを再構成する。

5.5 読み出しASICの波高

SCT モジュールはバイナリー読み出しのため波高分布を ADC を用いて直接もとめることができない。したがって、波高分布を見るためには間接的にもとめる必要がある。

図 5.6 に TDC による、様々なスレッショルドに関してトリガーからの時間に対する検出効率 を示した。この図に対してある時間領域を適当に決め、その領域での平均値をそのスレッショ ルドでの検出効率とした。さらにその検出効率が 50% になるときのスレッショルドをメディア ンチャージとし、その値を波高とした。正確なメディアンチャージを引き出すためにフィッティ ングを行なうが、その際のフィッティング関数について、以下述べる。

最小2乗フィッティング方法

未知パラメータ μ 、 σ がある値 μ_0 、 σ_0 である場合の 2 乗誤差を数値的に計算する関数を以下に示す。

$$err(\mu_0, \sigma_0) = \sum_{i=1}^{N} (n(\mu_0, \sigma_0, x_i) - y_i)^2$$

ただし、フィッティングさせるデータを x 、そのときの回答確率を y としている。カー ブフィッティングを行なう際に、 x と y で定義される以下のような正規累積分布関数が 良く当てはまることが知られている。

$$y \approx n(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} exp \frac{-(t-\mu)^2}{2\sigma^2} dt$$

図 5.6: 様々なスレッショルドに関するトリガーからの時間に対する検出効率

2 乗誤差 $err(\mu, \sigma)$ が最小になるように μ_0 、 σ_0 を変動させる。この関数の大域的最小点 をもとめ極小点を探す。その際、初期値として適当な数値を与えておけば関数は収束し、 数値的に μ や σ をもとめることができる。ここで、エラー関数

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x exp(-t^2) dt$$

とすると、 $n(\mu_0, \sigma_0, x_i)$ は

$$n(\mu, \sigma, x) = \frac{1}{2} (1 + erf(\frac{x - \mu}{\sqrt{2}\sigma}))$$

となる。

実は今回のフィッティングにはこの関数をベースとして、さらなる精度向上のために少し変 化させて用いているが、その精度良いフィッティングから正確なメディアンチャージをもとめ ることができた。

図 5.7 にバイアス電圧を一定にし、スレッショルドを様々に変化させた時の検出効率 (以下、 Scurve) とそのときのメディアンチャージの概念図を示す。

図 5.7: Scurve とメディアンチャージの概念図:バレルモジュール (0018)、バイアス電圧 150V のプロット。このときのメディアンチャージの値は 3.34(fC)

第6章 結果と考察

6.1 位置分解能

位置分解能は、5.3.1項ですでに述べたようにして residual マップを作り、ガウスフィットを施したときの σ の値とした。図 6.1 の residual マップはエンドキャップモジュール (K5_312**) で、スレッショルド 1.0fC バイアス電圧 350V でスキャンしたものである。residual マップの形状がガウス関数の形をしておらずやや四角い形状であることは、先に述べたようにストリップ検出器の読み出し確率が一様分布になることから当然であるといえる。この時の σ の値は 25.26であった。同じ条件のもとで他のモジュールの σ の値とエラーを表 6.1 にまとめた。このときのエラーは系統誤差は含まれていないフィッティングの際の統計誤差のみのものである。ただし、このスキャンを行なったとき、K5_306 と K5_513 のモジュールはまだ設置されていなかったので結果はない。また、reference モジュールであるバレルモジュール (20220170200010) は、常に一定のスレッショルド、バイアス電圧をかけているので以降の解析には用いていない。また、バイアス電圧は放射線損傷を与えたモジュールには 350V、与えていないモジュールには 150V をかけた。

図 6.1: residual マップへのガウスフィット (K5_312**)

また図 6.2 に、放射線損傷を与えたモジュールには 350V、与えていないモジュールには 150V のバイアス電圧をそれぞれかけたときの σ のスレッショルド依存性のグラフを示す。左にはバ レルモジュール、右にはエンドキャップモジュールをまとめてプロットしている。スレッショル ドの低いところ、及び高いところで σ の値は悪くなっていることが分かる。この理由としては、 まずスレッショルドの低いところはノイズが多くその影響であるといえ、またスレッショルド を上げれば上げるほどカウント数は減少していき、エラーの値が大きくなる。したがって、一

モジュール	バイアス電圧 (V)	σ	エラー
K5_312**	350	25.26	0.02
20220330200003**	350	26.32	0.13
K5_303*	350	25.32	0.11
20220170200153**	350	27.30	0.14
K5_503**	350	28.51	0.24
20220040200018	150	25.38	0.12
K5_310*	350	24.73	0.11
20220170200447	150	25.18	0.12
K5_504**	350	26.94	0.17

表 6.1: *σ* の結果 (1.0fC)

見 σ の値は良さそうではあるが、エラーの値が多きくなっている 3~4fC あたりからは信頼性が ないといえる。表 6.1 の σ の値は、 σ の期待値 ~ 23 μ m よりもやや悪い値となっているが、こ れは先述したようにまだ少しノイズの影響が残っているように思われる。これらのことを考慮 に入れると、最も良い σ の値は 1.5 ~ 2.5 fC であると言え、期待される位置分解能に十分近 い値が得られていることが分かる。

図 6.2: σのスレッショルドへの依存性 (150V/350V)

6.2 読み出しASICの波高分布

それぞれのモジュールに対して、5.5節のような方法で1ns毎に波高を調べてプロットした波高分布を図6.3に示す。このときバイアス電圧を放射線損傷を与えたのもに対しては350V、与えていないものに対しては150Vをかけている。

図 6.3: ASIC 内の波高分布 縦軸:メディアンチャージ (fC)) 横軸:時間 (ns)

ATLAS 検出器では 25ns 毎にビームが衝突する。したがって信号読み出しのピーキングタ イムが遅いと正確な粒子のタグができなくなってしまう。そこで、ピーキングタイムが明確に 分かるようにそれぞれの波高分布に ABCD 関数をフィッティングしている。ABCD 関数とは、 ABCD3T チップに対する増幅器のレスポンス関数であり、

$$b(t) = A \times a \left(19.1 \times \frac{t-d}{Tp} \right)$$

で表される。ここで、t(ns)は時間、Aは振幅、dは遅延、Tpはエレクトロニクスのピーキン グタイムである。さらに、関数a(t)は振幅器のレスポンスであるデルタ関数であり、

$$a(t) = -5.83 \times 10^{-3} \times e^{-5 \times 10^{-3} \times t} + (5.26 \times 10^{-4} \times t^2 + 5.54 \times 10^{-4} \times t + 5.83 \times 10^{-3}) \times e^{-0.1 \times t}$$

で表される関数である。

図 6.3 にはそれぞれの波高分布にこの ABCD 関数をフィッティングしているが、波高分布の ピークを中心として、左側の立上りは良いフィッティングをしているが、右側の傾斜はややず れる傾向にあるのが特徴である。

この波高分布の結果、K5_503**とK5_504**のモジュールの波高分布がバラついていること が分かる。この原因は、図 6.4 に示したヒットマップのように、ヒットのピークが鮮明に現れて いる 0447 モジュールに対して、K5_503**、K5_504**のモジュールは、ビームスポットがちょ うどチップ不良で信号を読み出せない箇所と重なっており、充分な読み出しが行なえなかった ことによる。

図 6.4: 0447(150V)、K5_503**(350V)、K5_504**(350V)のヒットマップ

そこで、この2つのモジュールに関してビームスポットが読み出しに支障のないチップにあ たるように、メインボックスの位置をチップ1つ分(約10mm)ずらし、バイアス電圧を500V かけたときの波高分布を図6.5に示す。これより、K5_503**とK5_504**の2つのモジュールも、 ビームスポットが読み出しできないチップを外れれば、他のモジュールと同様に鮮明な波高分 布を得ることができる。

図 6.5: メインボックス移動後の (左) K5_503** (右) K5_504** の波高分布 縦軸:メディアンチャージ (fC) 横軸:時間 (ns)

モジュール	@ 150/350(V)	@ 200/400(V)	@ 300/500(V)
K5_312**	30.56	30.95	28.50
20220330200003**	27.83	29.07	26.65
$K5_{-}303^{*}$	25.12	25.28	23.38
20220170200153**	29.62	28.58	25.83
$K5_{-}503^{**}$	-	-	24.13
20220040200018	22.52	21.93	19.61
$K5_{-}310^{*}$	27.49	26.95	24.78
20220170200447	21.98	21.79	22.35
K5_504**	_	-	25.73

表 6.2: 様々なバイアス電圧におけるピーキングタイム (ns) の結果

バイアス電圧を様々に変えたときのピーキングタイムの結果を表 6.2 に示す。モジュールに かけたバイアス電圧は表中では「@放射線損傷なし / あり」で表している。この結果より、放 射線損傷を受けたモジュールはやや遅い読み出しをしているものの、どのモジュールに関して も十分早い読み出しをすることができることが分かる。また表より分かるように、バイアス電 圧をあげていくとピーキングタイムは速くなっていくことも分かる。

6.3 ノイズオキュパンシー

図 6.6 にノイズオキュパンシーのスレッショルド依存性を示す。縦軸をノイズオキュパンシー、 横軸をスレッショルドとしている。図の左は放射線損傷を与えていないバレルモジュール(0447)、 真ん中は5年分の 放射線損傷を与えたエンドキャップモジュール(K5_303*)、右は10年分の放 射線損傷を与えたバレルモジュール(0153**)である。また、表 6.1 に全モジュールについての ノイズオキュパンシーの値を示す。

図 6.6: ノイズオキュパンシー (左) non irradiated (0447) (中) half irradiated (K5_303*) (右) full irradiated (0153**)

モジュール	モジュールのタイプ	バイアス電圧 (V)	ノイズオキュパンシー
$K5_{-}312^{**}$	エンドキャップ	350	5.27×10^{-4}
20220330200003**	バレル	350	8.18×10^{-3}
$K5_{-}303^{*}$	エンドキャップ	350	1.45×10^{-4}
20220170200153**	バレル	350	5.24×10^{-3}
$K5_{-}503^{**}$	エンドキャップ	350	8.39×10^{-3}
20220040200018	バレル	150	1.10×10^{-5}
$K5_{-}310^{*}$	エンドキャップ	350	$9.37{ imes}10^{-5}$
20220170200447	バレル	150	6.61×10^{-5}
K5_504**	エンドキャップ	350	5.79×10^{-3}

表 6.3: ノイズオキュパンシー

本物のトラックによるオキュパンシーがシミュレーションによると 5×10⁻³ 程度である。したがってノイズによるオキュパンシーはこれ以下にする必要がある。放射線損傷を受けたモ

ジュールは図 6.6 を見ても分かるようにノイズが大きくなる。したがって要求する値を1桁下 げた 5×10⁻⁴ 程度とする。表の結果から、その要請を満たしていることが分かる。

6.4 検出効率

全モジュールの Scurve を図 6.7 に示す。横軸は補正スレッショルド、縦軸は検出効率である。 また、図 6.7 の括弧内はモジュールにかけたバイアス電圧の値を示しており、それぞれ (放射線 損傷なし / あり)を示している。実際の実験におけるデータ収集は、1fC のスレッショルドの値 に固定して行なう予定である。そこで、1fC のスレッショルドに注目してそれぞれのプロット を見ていく (表 6.2)。バレルモジュールに関して言えば、放射線損傷を与えたモジュールを含 めた全てのモジュールが 150V のバイアス電圧で 99% の検出効率を示している。それに対し て、5 枚のエンドキャップモジュールのうち放射線損傷を 10 年分与えた 2 枚のモジュールは他 のエンドキャップモジュールと比べてみて、著しく検出効率が悪い。これは、6.1 節でも説明し ていたように、ちょうど読み出しのできないチップにビームが当たっていたために、十分な信 号読み出しができずに検出効率が著しく悪くなったためである。しかし、ビームスポットを読 み出しのできるチップに当てるようにしてからは (バイアス電圧:500V)、他のモジュールと同じ く 1fC で 99% 以上を示すようになった。また、5 年分の放射線損傷を与えたモジュールに関 して言えば、バイアス電圧 350V で 99% の検出効率を示しているのも分かる。実際の ATLAS 実験では、放射線損傷を与えていないモジュールには150V、与えたモジュールには 300~400V のバイアス電圧をかけて稼働する予定であるので、以上の結果は十分良いと言える。

図 6.7: efficiency のスレッショルド依存性

モジュール	バイアス電圧	検出効率	メディアンチャージ
	(V)	@ 1fC	(fC)
K5_312**	350	98.5	2.4
	500	98.0	2.7
20220330200003**	350	99.5	2.8
	500	99.5	3.1
$K5_{-}303^{*}$	350	98.8	2.9
	500	99.2	2.9
20220170200153**	350	99.5	2.7
	500	99.5	3.3
$K5_{-}503^{**}$	350	49.3	1.7
	500	97.4	3.1
20220040200018	150	99.3	3.3
	300	99.5	3.3
$K5_{-}310^{*}$	350	97.9	2.6
	500	99.0	2.8
20220170200447	150	99.5	3.2
	300	98.5	3.1
$K5_{-}504^{**}$	350	67.8	1.6
	500	98.3	3.2

表 6.4: 1fC での検出効率とメディアンチャージ

6.5 検出効率のバイアス電圧依存性

この節では、前節で述べたメディアンチャージのバイアス電圧依存性について評価する。図 6.8、9、10、11 に、スレッショルドを様々に変えたバイアス電圧に対する検出効率を示した。 このプロットから、シリコン検出器を全空乏化するのに必要なバイアス電圧を知ることができ る。放射線損傷を与えていないモジュールは、バイアス電圧に関係なく、検出効率 99% の値 を示している。つまり、バイアス100V以下で検出器は全空乏化されていることが分かる。そ れに対して、放射線損傷を与えたモジュールは、低いバイアス電圧では検出効率が悪く、これ は検出器の全空乏化が充分成されていないことを意味する。しかし、高バイアスになるにつれ て検出効率の値は良くなっていき、一定の値に近付いていく。10年分の放射線損傷を与えたバ レルモジュールは300V、エンドキャップモジュールは350Vのバイアス電圧を与えれば全空乏 化ができることが分かる。それに対して、5年分の放射線損傷をあたえたものは、200~250Vの バイアスをかければ充分全空乏化できる。

図 6.8: efficiency のバイアス電圧依存性: 0.9(fC)

図 6.9: efficiency のバイアス電圧依存性: 1.0(fC)

図 6.10: efficiency のバイアス電圧依存性: 1.1(fC)

図 6.11: efficiency のバイアス電圧依存性: 1.2(fC)

6.6 S-N 比

チップの校正用のキャパシタンスの大きさには個体によって不確定性がある、そこで、キャ リブレーションスケールに依存しない信号雑音比(以下、S/N(signal to noise)比)を考える。 このときのノイズとは、ヒットマップよりピークの存在するチップのノイズのことであり、そ のノイズはビームテストを行なう前のキャリブレーションによってチップごとに調べている。 S/N比の値は、6.3節でもとめたメディアンチャージをこのノイズで割った値である。バレルモ ジュールとエンドキャップモジュールについてのS/N比のプロットを図6.9に示す。

図 6.12: シグナル・ノイズ比

放射線損傷を与えたモジュールは、緩やかに上昇し一定値に定まる傾向にある。一般にバイ アス電圧をあげると、ノイズ・シグナルともに増加するが、このS/N値が大きくなるというこ と から検出器がノイズよりもシグナルの方を効率良く読み込んでいることが分かる。つまりこ の理由として、シリコン検出器の全空乏化が充分に成されているのかが起因しているといえる。 放射線損傷を与えていないバレルモジュールのS/N値は13、放射線損傷を10年分与えたもの はバレルモジュール、エンドキャップモジュールともに 6~7、5 年分の損傷を与えたモジュー ルは10となっていることが分かる。ヒッグス生成などの物理的に意味のあるイベントはエネル ギーが高く、minimum ionizing particle であるといえる。今回のビームテストのシグナルの大 きさはLHC 実験とほぼ同じであることから、この程度のSN 比の値であれば、十分シグナルが 読み出せていることがいえる。ここで、バレルモジュール 0447 が他と比べおかしな振る舞い をしていることが分かる。このモジュールは、ASIC 段階の DAQ テストの際、IC の不良の1つ LGS(Large Gain Spread) であることが分かっている。これは、Gain が通常 40~60mV/fC であ るのに対して 0~70mV/fC と広がっているものである。この結果を見る限り、バレルモジュー ル 0447 に関しては 300V 以上のバイアス電圧をかけることにより、正常に使用できることが 分かる。また、エンドキャップモジュールの $K5_503^{**}$ と $K5_504^{**}$ は、先述したようにビーム スポットがちょうどチップ不良で信号を読み出すことのできない場所に当たっていたためキャ リブレーション時にそのチップのノイズを測ることができなかったため、S/N 値をだすことが できなかった。

第7章 まとめ

2003年5月、CERN・H8施設において180GeVc π^+ ビームを用いて、ATLAS検出器での飛跡検出を目的としたSCTモジュールのビームテストを行なった。そのとき得られたデータをオフライン時に解析をし、SCT検出器の性能を評価した。今回のビームテストでは、LHC実験開始から10年間にSCTモジュールが受けると予想される 3×10^{14} particle/cm²の放射線被曝を与えたモジュールと5年間に受けると予想される 1.5×10^{14} particle/cm²の放射線被曝を与えたモジュールをテストした。また今回の解析には、新しくDSTフォーマットを使用して解析を行なった。

位置分解能については、1.5~2.5fCのスレッショルドで、80µm ピッチの一様分布から期待される 23µm の位置分解能に十分近い値を得た。また読み出し ASIC の波高分布において、ATLAS 検出器でビームが 25ns 毎に衝突するのに対して、いずれのモジュールにおいても十分速いピー キングタイムであることを確認した。検出効率については、チップ不良のない場所にビームス ポットが存在すれば、いずれのモジュールにおいても 99% に近い検出効率が得られた。また、 10 年分の放射線被曝を与えたバレルモジュールに関しては 300V、エンドキャップモジュールに 関しては 350V、5年分の放射線被曝を与えたエンドキャップモジュールに関しては 200~250V、 放射線損傷を受けていないモジュールに関しては 100V 以下のバイアスをかければシリコンの 全空乏化ができ、いずれも 99% に近い検出効率を得ることが分かった。また SN 比に関しては、 放射線損傷を与えていないモジュールは 13、5年分の被曝を与えたモジュールは 10、10年分の 被曝を与えたモジュールは 6~7 の結果を得た。この値は、LHC 実験開始 10 年後において SCT モジュールは支障なく使用できる値である。 本研究を行うにあたり、多くの人の助言をいただきました。

広島大学・大杉節教授には、アトラスビームテストへの参加の機会を与えてくださいました。 広島大学・岩田洋世先生には、シリコン検出器やビームテストに関しての基礎を一から教えて いただいただけでなく、CERN 滞在中には、慣れない海外での日々の生活においても細やかな 気を配っていただいたお蔭で、集中してビームテストに参加をすることができました。深く感 謝致します。また、今回のビームテストでは、他大学の学生にもかかわらず京都教育大学・高 嶋隆一先生、岡山大学・田中礼三朗先生には大変お世話になりました。高エネルギー加速器研 究機構(KEK)の海野義信先生には、まずビームテストの解析をする機会を与えていただきまし た。また、解析を行なう上での基本的知識を忙しい傍ら丁寧なご指導をしていただきました。 私にとってこのような研究に携わることができたことは人生において本当に貴重なものとなり ました。また KEK の池上先生には、SCT モジュールの DAQ のシステムや NIM モジュールの 基本知識について、なかなか理解できない私に何度も丁寧に説明をしてくださいました。ビー ムテストでは、メルボルン大学のGareth.Moorhead先生にビームテストを行なううえでの実践 的なアプローチの仕方を学ぶことができました。バレンシア大学の Marcel Vos、 Jose Enrique Garcia、 Sergio Gonzalez Sevilla の 3 人には、CERN 滞在時だけでなく帰国後も、英語力の乏 しい私に対して根気強くかつ丁寧に解析方法を伝授してくださいました。正直、どのように感 謝をすればいいのか分からないくらいです。さらに、ヒッグスの勉強を始めるきっかけを与え て下さった icepp・浅井祥仁先生と KEK・神前純一先生には大変お世話になりました。私が大 学に入学して以来、ヒッグス解析を行なっていたときが一番、純粋物理を深く考え、素粒子の 神秘を感じていたときだった気がします。

研究室の日々の生活でも同じく多くの人達に支えられてきました。

同期の上田君、大野君、富永君、中本君には、それぞれの研究について熱く語ってもらうこと により、違った分野の研究に興味、関心を持つことができました。また日々の生活でも「大学 生」として満喫でき、私的なこともいろいろ相談できる貴重な仲間であったと個人的に思って ます。3年間という研究生活をともにできたことを嬉しく思ってます。また、ドクターの川埜 さんと後輩の阿部さんには、私の集中力の切れたときなどいろいろご迷惑をかけたと思います。 感謝をするとともにお詫びもしなければなりません。また、1年間という短いあいだではあり ましたが、修論、卒論の追い込み時期を一緒に乗り切った研究室の4年生の人達には、いろい ろ励まされることもありました。研究室配属以来、体調不良が重なり気がめいっているときで も、気兼ねなく研究室に顔を出せたのは、皆さんのつくっていた研究室の雰囲気にあると思っ ています。本当にありがとうございました。

最後に、大学研究生活を送る間いつも私の精神的な支えになってくれた家族に心から感謝します。ありがとう。

53

関連図書

- [1] ATLAS INNER DETECTOR TECHNICAL DESIGN REPORT I
- [2] ATLAS INNER DETECTOR TECHNICAL DESIGN REPORT *II*
- [3] J.E.Garcia Navarro, M.Vos, "Introduction to SCT Test Beam DST format", October 2002
- [4] M.Vos, et al., "Beam tests of ATLAS SCT silicon strip detector prototypes; an overview of recent results", November 2003
- [5] M.Vos, et al., "A study of the tracking performance of irradiated SCT prototypes using test beam data.", March 2003
- [6] Project Specification, Project Name: ABCD3T Version: V1.2, July 2000
- [7] Jose.Enrique.Garcia, et al., "Comparison of beam test results for irradiated SCT modules", September 2002
- [8] A.J.Barr, et al., "Beamtests of ATLAS SCT Modules in August and October 2001"
- [9] T.Akimoto, et al., "Beam study of irradiated ATLAS-SCT prototypes", 2002
- [10] A.Barr, et al., "Results from an LHC-structured beamtest of SCT prototype modules"
- [11] Szymon Gadomski, et al., "Measurement of amplifier pulse shapes in SCT modules using a laser setup", September 2001
- [12] A.Barr, et al., "Beamtests of Prototype ATLAS SCT Modules at CERN H8 in June and August 2000", January 2001
- [13] T.Kondo, et al., "Construction and performance of the ATLAS silicon microstrip barrel modules"
- [14] Y.Unno, et al., "Beamtest of Non-irradiated and Irradiated ATLAS SCT Micristrip Modules at KEK"
- [15] Y.Unno, et al., "ATLAS Silicon Microstrip Semiconductor Tracker (SCT)"
- [16] 橋崎 徹, "ATLAS SCT モジュールの性能評価", 岡山大学, 修士論文, 2001 2

- [17] 松尾 武, "アトラス実験のためのシリコン飛跡検出器のモジュール性能評価", 岡山大学, 修 士論文,2002 2
- [18] 秋元 崇, "アトラスバレル SCT 用量産モジュールの品質保証のシステム", 筑波大学, 修士 論文,2002 2
- [19] 松本 悠, "ATLAS 実験における ttH production を用いた Yukawa Coupling 測定の研究", 東京大学, 修士論文,2003 2
- [20] 宇野 進吾, "宇宙硬 X 線撮像用低ノイズ両面シリコンストリップ検出器の開発", 広島大学, 修士論文,2003 2
- [21] ROOT Reference Guide (http://root.cern.ch/root/Reference.html).