Fermi衛星を用いた太陽系近傍の分子雲領 域における宇宙線と星間物質の研究

広島大学大学院理学研究科物理科学専攻 高エネルギー宇宙・可視赤外線天文学研究室 M096109

佐田貴幸

主查:深澤泰司 副查:小嶌康史

2011年2月10日

概要

宇宙には、活動銀河核 (AGN)、ブラックホール、パルサーなどが粒子を加速・加熱する 高エネルギー現象が数多く存在し、これらは X 線ガンマ線観測で探ることが可能である。 このガンマ線の最新鋭の衛星が 2008 年 6 月に打ち上げられた Fermi 衛星であり、1990 年 代に活躍した CGRO 衛星搭載の EGRET 検出器に比べて広いエネルギー帯、広い有効面 積、広い視野、高い空間分解能を持ち、多くのガンマ線天体の検出と研究が期待される。

銀河系内の星間空間には、高エネルギー粒子である宇宙線が飛び交っている。銀河系内 に広がる星間物質は、この高エネルギー宇宙線陽子との核子-核子反応によって生じる中 性π中間子の崩壊や宇宙線電子との間で起こる制動放射を通じて、高エネルギーのガン マ線を放射する。この過程で生成されるガンマ線の放射率は、物質の温度などの状態に依 存しないため、ガンマ線観測は宇宙線および星間物質の分布を調べる強力な手段になる。 本論文では、分子雲およびその周辺領域の Fermi 衛星による観測結果を述べる。分子雲は 分子ガスが集中した領域で、星形成の現場である。観測には分子の回転遷移によって放射 される電波が用いられることが多いが、主成分である水素分子は電波で見ることができな い。したがってガンマ線観測が宇宙線と星間ガスの分布を調べる有力な手段となる。本研 究では、太陽系近傍(~200 pc 程度内)の南のかんむり座(R CrA)分子雲領域の観測・解 析を行った。この分子雲は10⁴太陽質量程度と比較的小さく、Fermi 衛星の優れた感度に よって初めてガンマ線で調べることが可能になった。また、銀緯が高く(|b|~20°)、銀河 面からの広がったガンマ線放射の影響を受けにくいため、バックグラウンドを小さくして 解析することができる。この領域の 0.1-10 GeV でのガンマ線空間分布やスペクトルの解 析結果を述べ、他の領域のガンマ線観測とも比較し、太陽系近傍の物質分布や宇宙線分布 について議論する。

目 次

第1章	序論	7
1.1	ガンマ線天文学	7
1.2	ガンマ線観測衛星 Fermi	7
	1.2.1 Fermi 衛星の概要	7
	1.2.2 Fermi 衛星搭載 LAT 検出器と EGRET の比較	8
	1.2.3 LAT 検出器の検出原理	11
	1.2.4 期待される成果	15
笛ぃ音	空中値に トスガンフ値放射機構	1 🖛
东 2早	ナ田稼によるカノマ稼成別成構 相互変中の定体	17
2.1		17
	2.1.1 地球近伤で観測される十田線のエイルキー分布	17
2.2	2.1.2	19
2.2	カンマ線の放射機構	20
	2.2.1 π° 用氓	20
	2.2.2 制則放射	21
2.2	2.2.3 世コンフトン 取乱	23
2.3	カンマ線観測の息義	24
第3章	分子雲の一般論	27
3.1	星間ガス....................................	27
3.2	分子雲の観測	29
	3.2.1 可視光による観測	30
	3.2.2 電波による観測	30
	3.2.3 ガンマ線による観測	31
3.3	近傍の分子雲とターゲットの選択	32
		~ (
弗 4早	分士雲 R CrA からのカフマ 緑放射	34
4.1	解析方法	34
	4.1.1 (使用したテータ	34
	4.1.2 解析の手法	38
	4.1.3 最尤法	41
4.2	附 机 紀果	42

第5章	まとめと今後	57
	4.3.2 星間ガスの分布	51
	4.3.1 太陽系近傍の宇宙線スペクトル	48
4.3	議論	48
	4.2.3 星間ガスからのガンマ線放射と系統誤差	46
	4.2.2 Fit 結果の検証	46
	4.2.1 使用するモデルの決定	42

付録A	R CrA分	子雲領域に存在するガン	マ線源のスペクトル	58
-----	--------	-------------	-----------	----

表目次

1.1	Fermi(LAT) と EGRET の性能比較表 [1][2][3]	9
3.1	星間ガスの各形態ごとの物理パラメータ [10]	28
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	FT1 ファイルのデータフォーマット [26] FT2 ファイルのデータフォーマット [26] イベントセレクション <i>L</i> (<i>B</i> - <i>V</i>) _{res} マップの有無による尤度の違い ガンマ線点源の有為度の下限の違いによる尤度の違い R CrA 分子雲領域からの各ガス成分からのガンマ線放射率 各領域ごとの X _{co} の比較	35 36 36 43 43 50 54
A.1	R CrA 分子雲領域内に存在するガンマ線源。上の9つが1年カタログで TS が 50 以上のもの、下の 3 つが 2 年カタログで明るくなったものを示してい る。[35][36]	59

図目次

1.1	Fermi 衛星 (模式図)。オレンジの四角の中に主検出器である LAT が収められている。	8
1.2	LAT のエネルギーごとの角度分解能 (Diffuse Class)。黒線は1光子が入射 してきたときに 68%の割合で位置決定できる角度の範囲、赤線は 95%位置 決定できる角度の範囲を示す。表 1.1 には 68%での角度分解能を示してい	
1 2	る [2]	9
1.0	度がよい。[3]	10
1.4	Fermi 衛星の検出感度を積分時間ごとに示したマップ (銀河座標)[1]	10
1.5	Fermiによる全天マップ(左)と EGRET による全天マップ(右)[4][5]	11
1.6	LAT 検出器の模式図 [1]	12
1.7	トラッカーアレイ。シリコンストリップ検出器が4×4に並べられている。[1]	13
1.8	トラッカーの検出原理 [1]	13
1.9	シリコンストリップ検出器の写真	14
1.10	カロリーメータの構造 [1]	14
1.11	ACD の構造。最上層の5×5のアレイとサイドの16枚が4層に渡って、計 89枚のプラスチックシンチレータが使われている。[1]	15
2.1	地球近傍の宇宙線粒子のエネルギー分布 [12]	18
2.2	π^0 崩壊の概念図	21
2.3	宇宙線と星間ガスの反応の結果、π ⁰ 崩壊によって生じるガンマ線のスペク トル。(a) は宇宙線陽子と水素の反応のみ、(b) は宇宙線と星間ガスの化学	
	組成を加味している。[18]	22
2.4	制動放射の概念図	23
2.5	逆コンプトン散乱の概念図	24
2.6	宇宙線と星間物質との相互作用によって放射される広がったガンマ線のデー タおよびモデルスペクトル。銀緯が $10^{\circ} < b < 20^{\circ}$ の全領域の平均をとっ たものである。赤線は π^{0} 崩壊、紫線が制動放射、緑線が逆コンプトン散 乱。これらに青で表されるガンマ線点源からの放射とバックグラウンド成 分を足し合わせて作られたモデルが黒の斜線で示されている。赤の丸印は	
	Fermi のテータである。[19]	26

3.1	銀河系の回転曲線 [20]	29
3.2	可視光で見るオリオン座の馬頭星雲。背景の星からの光が吸収されて見る	
	ことができない[21]	30
3.3	¹² COの回転遷移 2.6 mm ラインで見た銀河面 [22]	31
3.4	オリオン座分子雲。CO の 2.6 mm ラインで見たイメージ (左) と EGRET	
	によるガンマ線イメージ (右)。[23]	32
3.5	太陽系から1 kpc 以内に存在する分子雲の位置とその質量。円の大きさが	
	分子雲の質量、座標が太陽系からの距離および銀河座標における位置する	
	方向を、模様が銀河面からの距離を表している。[25]	33
4 1	PT1 フェノル ホーヴ タルフズ いた は 切ぶ またい ナ い フィップ	07
4.1	FII ノアイルの一部。谷尤士ことに情報が書さ込まれている。	37
4.2	R CrA 分丁雲領域のカンマ線カワントマッフ	39
4.3	R CrA 分于雲領域の $E(B - V)_{res}$ ガスマック。 上上か $N(H_I)$ マック、 石上	10
	$\mathcal{D}^{v} W_{CO} \checkmark \mathcal{Y} \mathcal{Y}, \uparrow \mathcal{D}^{v} E(B-V)_{res} \checkmark \mathcal{Y} \mathcal{Y}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	40
4.4	$E(B-V)_{res}$ マックの有無による残差マックの変化	44
4.5	$E(B-V)_{\rm res}$ マックの有無による $q_{\rm HI}$ およい $q_{\rm CO}$ の変化。 亦か $E(B-V)_{\rm res}$	
	を入れたとさ、緑が入れないとさの結果	44
4.6	カンマ線点源の有為度の下限の遅いによる $q_{\rm HI}$ およの $q_{\rm CO}$ の変化。	45
4.7	1年カタロクの仮に明るくなった3つの点源の有無による $q_{\rm HI}$ およい $q_{\rm CO}$ の 恋化 土 ボト源されたた 。 $(q_{\rm HI})$ たかいたた。 $(q_{\rm HI})$	
1.0	変化。亦か点源を入れたとさ、緑か入れないとさの結果	45
4.8	R CrA分子雲領域のテータカワントマッフ (左上) とモデルカワントマッフ	
1.0	(- L) と 凹 る の 残 左 ヾ ッ フ (上 下)	47
4.9	残左マッノの分甲をカリス関数でノイッティンクした凶(α)	48
4.10	合カス成分ことのデータモデルマッフ。 左上が H _I カス、 石上が CO カス、	10
1 1 1		49
4.11	生间 ススからの スノマ 緑 取別の スペクトル。 圧上が 原」 スス、 石上か しし かと トレーフ さわる ガフーナ 下が 尼(D - U) かと トレーフ さわる ガフ	۲1
1 10	$M \circ \Gamma V = A \circ 4 \log \lambda A$ 、 $\Pi + M \circ L (D = V)_{res} M \circ 0 \Gamma V = A \circ 4 \log \lambda A$ 。 	51
4.12	報なハッククラウントモデルの不足住による示礼誤差の計画。 エバ原 」 ガスから 左が分子ガスからのガンマ線放射家 緑の豊が一様バッカガラ	
	カスパら、 $(1/2)$ 」カスパらのカン、 $縁 成別率。縁の市が、(k/2)クノウンドエデルの normalization を\pm 1007 変化させたときの系統調美を元す$	50
1 1 9	シントビアルの $\operatorname{HormanZation}$ $e \pm 10\%$ 変化 $e = c + c + c + c + c + c + c + c + c + c$	52
4.15	ル子的序のの不足住による不佩訣左の計画。ユバ尿「カヘル・5、 ロル・カ」 ガフからのガンフ組故財変 去のデータ占がフピン泪度 T 195 K のとき	
	カスからのカンマ線版別率。小のケーク点かスピン価反 $I_S = 123$ K のとさ 、 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
	し、	50
1 1 1	の示礼訳左と小り。 D C A A Z 電気はにわけて 臣 Z おっ 式 A の ガンマ 約 広 財 支 (主) と カ メ レ	52
4.14	$n \cup IA / J J 去 限場にやり る ふ J A / 瓜 / り / J = W \otimes M \otimes$	
	$A \to E / J$ 」 去にわりるほ J $A \land IX / U / U / Y W M M (M) \in LIS U = 1 / U$	50
	(杰) C Gould Delt のカイ × 豫 以別 半 の 比較 (祢)。	53

4.15	R CrA 分子雲領域の H _I と CO のガンマ線放射率の関係。データ点は、表	
	4.6の値に対応し、低エネルギー側ほど右上に位置する。 5	4
4.16	R CrA 分子雲領域の H _I と、H _I や CO でトレースできないガスからの放射	
	率の関係。データ点は、表 4.6 の値に対応する。 5	6
A.1	1FGL J1832.6-5700	0
A.2	1FGL J1842.3-5845	0
A.3	1FGL J1849.6-4314	0
A.4	1FGL J1902.0-5110	0
A.5	1FGL J1918.4-4108	1
A.6	1FGL J1936.9-4720	1
A.7	1FGL J1938.2-3957	1
A.8	1FGL J1946.7-5404	1
A.9	1FGL J1958.4-3847	1
A.10	1FGL J1754.0-5002	2
A.11	24M2237	2
A.12	24M2282	2
A.13	1FGL J1754.0-5002 のスペクトル変化6	3
A.14	24M2237のスペクトル変化 6	3
A.15	24M2282のスペクトル変化 6	3

第1章 序論

1.1 ガンマ線天文学

ガンマ線天文学は、宇宙からくるガンマ線を観測して天体現象を研究する分野である。 1962年のジャコーニ、ロッシらによるX線天体の発見により、X線やガンマ線を放射す る高エネルギー天体の観測が始まり、20世紀後半の検出技術の発展に伴い、急速に発展 してきた。ガンマ線観測の方法には大別すると2種類ある。地上望遠鏡を用いる方法と人 工衛星を用いる方法である。

100 GeV 以上の超高エネルギーのガンマ線 (TeV ガンマ線) を観測するには地上望遠鏡 を用いる。ガンマ線が大気に入ると大気中の原子核と相互作用を起こし電磁シャワーを起 こす。特に入射ガンマ線が 100 GeV を越える (TeV 領域) 場合はシャワーに伴って発生し たチェレンコフ光が地表まで到達するため、地上望遠鏡 (チェレンコフ望遠鏡) による観 測が可能であり、我が国の CANGAROO やドイツの H.E.S.S などが活躍している。

100 GeV 以下のガンマ線 (GeV ガンマ線) は大気に吸収されてしまうために人工衛星での 観測が必要になる。人工衛星によるガンマ線観測は1960 年代 OSO-3 から SAS-2、COS-B、 1990 年代の CGRO 衛星の EGRET 検出器へと引き継がれてきた。ERGET 検出器による 観測により多くの活動銀河核 (AGN)、パルサー、太陽フレア、ガンマ線バーストなどの ガンマ線天体、および宇宙線と星間物質との相互作用による広がったガンマ線の放射など が観測された。

Fermi 衛星はガンマ線天文学を大きく発展させるために 2008 年 6 月 12 日に打ち上げら れた。Fermi は EGRET を大きく上回る性能を持ち、感度が数 10 倍に向上している。こ れにより、今まではわからなかった GeV 領域での宇宙の姿の解明が期待されている。現 在、打ち上げから 2 年以上が経ち、チームにより様々な研究の成果が発表されている。

1.2 ガンマ線観測衛星 Fermi

1.2.1 Fermi 衛星の概要

Fermi 衛星は日本時間 2008 年 6 月 12 日に Kennedy 宇宙センターで打ち上げられた宇宙 ガンマ線衛星である。アメリカ、日本、イタリア、フランス、スウェーデンなどによる国 際協力のもと開発された。Fermi 衛星の模式図を図 1.1 に示す。Fermi 衛星は LAT(Large Area Telescope) と GBM(Gamma-ray Burst Monitor) の 2 つの検出器を持っている。主 検出器である LAT は広い視野とエネルギー帯で全天ガンマ線スキャンを行う検出器で、 1991-2000年に活躍した EGRET 検出器の性能を大きく上回っており、様々な高エネルギー 現象や、EGRET では未同定だった天体の同定が期待されている。以下では、単に Fermi と呼ぶときはこの LAT 検出器のことを指すものとする。

図 1.1: Fermi 衛星 (模式図)。オレンジの四角の中に主検出器である LAT が収められている。

1.2.2 Fermi 衛星搭載 LAT 検出器と EGRET の比較

Fermi と EGRET の性能比較を表 1.1 に示す。Fermi はエネルギー帯、視野、有効面積、 空間分解能、エネルギー分解能・時間分解能など全ての面で EGRET の性能を大きく上 回っていることがわかる。図 1.2 に LAT のエネルギーごとの角度分解能を示す。Fermi は 100 MeV 以上で 3.5 deg、10 GeV 以上では 0.15 deg 程度という高い空間分解能を持って いる。また空間分解能の良い高エネルギーでも有効面積が大きいため、Fermi 衛星で得ら れるイメージの質は飛躍的に向上している。図 1.3 にエネルギーごとの有効面積を示す。 これを見るとわかるように、1 GeV 以上の領域で有効面積が広いことがわかる。また、図 1.4 は Fermi 衛星の検出感度を積分時間ごとに示したものである。軌道周期 95 分で全天の 約 80 % をカバーすることができる。この広い視野を生かして全天を長期的にサーベイす ることができる。

	Fermi(LAT) Dffuse Class	EGRET		
エネルギーバンド	20 MeV - 300 GeV	20 MeV - 30 GeV		
有効面積	$6500 \text{ cm}^2 (1 \text{ GeV})$	1500 cm^2		
Field of View	> 2.4 sr	$0.5 \ \mathrm{sr}$		
角度分解能	$3.5\degree~(100~{ m MeV})$	$5.8\degree$ (100 MeV)		
	$0.15\degree~(10~{\rm GeV})$	$0.5\degree~(10~{ m GeV})$		
エネルギー分解能	9 - 15%(100 MeV-1 GeV)	10%		
	8 - 9%(1 GeV-10 GeV)			
1イベントデッドタイム	$26.5~\mu { m s}$	100 ms		
点源位置決定精度	< 0.5'	15'		
点源感度	$3 \times 10^{-9} \text{ cm}^{-2} \text{s}^{-1}$	$10^{-7} \text{ cm}^{-2} \text{s}^{-1}$		

表 1.1: Fermi(LAT) と EGRET の性能比較表 [1][2][3]

図 1.2: LAT のエネルギーごとの角度分解能 (Diffuse Class)。黒線は1光子が入射してき たときに 68%の割合で位置決定できる角度の範囲、赤線は 95%位置決定できる角度の範 囲を示す。表 1.1 には 68%での角度分解能を示している [2]

図 1.3: LAT のエネルギーごとの有効面積 (Diffuse Class)。1 GeV 以上の領域で感度がよい。[3]

図 1.4: Fermi 衛星の検出感度を積分時間ごとに示したマップ (銀河座標)[1]

図 1.5: Fermi による全天マップ(左)と EGRET による全天マップ(右)[4][5]

Fermi および EGRET で得られた全天ガンマ線マップ (銀河座標) を図 1.5 に示す。左が Fermi の公開 12ヶ月イメージでエネルギー範囲は 200 MeV 以上である。右は EGRET の 1991-1996 年のイメージでエネルギー範囲は 100 MeV 以上である。

中心に明るく光る帯状の放射が銀河面である。どちらのマップも明るいが、Fermiで得られたマップは銀河面近くでも点源がはっきり見えている。マップ全体を見ても Fermiの 方が細かい点源が見えているのがわかる。また銀河面から離れた高銀緯領域に広がった放 射がいくつか見える。これらは太陽系近傍の星間ガスからの放射で、特に濃い所は分子雲 である。

1.2.3 LAT 検出器の検出原理

Fermi の主検出器である LAT は電子陽電子対生成型ガンマ線検出器である。これはガンマ線が入射したときに対生成によって発生した電子・陽電子をとらえることでガンマ線の検出を行うものである。

図1.6にLAT検出器の模式図を示す。LATは飛跡を検出するトラッカー(TKR)、エネ ルギーを測定するカロリーメータ(CAL)、バックグラウンドとなる荷電粒子を識別する ためのAnti-coincidence Detector(ACD)から構成されている。LATはタワーと呼ばれる モジュールを4×4に配列してあり、各モジュールがTKRとCALを縦列に置き、全16タ ワーの周りを低質量のアルミニウムで覆っており、それらの周りにACDを搭載するとい う構成をしている。モジュール化することにより、直接関係のないモジュールでのイベン トでトリガーがかからないようにできるために不感時間を減らせる。[1]

トラッカー (TKR)

トラッカーは入射ガンマ線の到来方向を割り出すための飛跡検出器である。19層のトレイがあり、それぞれにシリコンストリップ検出器を4×4の16枚取り付けたシリコンレイヤーが2枚と入射ガンマ線と相互作用を起こすための原子番号が高いタングステンのシートの重ね合わせで構成されている。シリコンレイヤーは最上部と最下部のトレーには

図 1.6: LAT 検出器の模式図 [1]

それぞれ下部、上部にだけ使われているので全部で 36 枚のシリコンレイヤーが含まれている。図 1.7 は LAT に用いられているトラッカーアレイの写真である。

有効面積を確保するには、タングステンシートは厚い方がよいが、厚過ぎると生成され た電子陽電子が多重散乱を起こして角分解能が悪化する。特に低いエネルギーの光子の到 来方向を精度良く決定するためには、多重散乱は無視できないので、最初の12層のトレ イには薄いシート(0.095 mm)が入っている。逆に高いエネルギーを持つ光子の場合は多 重散乱をそれほど気にする必要はないので、有効面積を確保するために下の4層のトレイ には厚いシート(0.72 mm)が入っている。さらにその下のトレイには多重散乱により飛 跡がゆがめられることを防ぐためにタングステンシートは入っていない。図1.8にトラッ カーがガンマ線を検出する原理を書いたイラストを示す。ガンマ線が入射するとタングス テンシートで対生成が起こり、電子・陽電子が生成され、その飛跡をシリコンストリップ 検出器で検出する、という過程でガンマ線の到来方向を割り出している。

228 µm ピッチという高い空間分解能をもつシリコンストリップ検出器を用いることで 飛跡検出の精度および角度分解能を向上させることができ、また、天体からのガンマ線に よる事象と荷電粒子による事象を飛跡の形状を用いて区別し、バックグラウンドを低減で きる。シリコンストリップ検出器は放射線耐性が強く、高いトリガーレートにも耐えるこ とができ、また低電力での高速読み出しの技術が確立しているために、衛星での過酷な 環境にも十分耐えられる。このシリコンストリップ検出器は、広島大学が中心となって研 究・開発したものである (図 1.9)。[6][7][8]

カロリーメータ (CAL)

カロリーメータは入射した荷電粒子のエネルギーを測定するものである。図 1.10 にカ ロリーメータの構造図を示した。カロリーメータはトラッカーの下に位置し、CsI(TI) シ ンチレータのアレイで構成されている。入射ガンマ線から生成された電子・陽電子がカロ

図 1.7: トラッカーアレイ。シリコンストリップ検出器が4×4に並べられている。[1]

図 1.8: トラッカーの検出原理 [1]

図 1.9: シリコンストリップ検出器の写真

リーメータに入射すると、シンチレータ中で電磁カスケードが起こる。これによって生じ る蛍光をフォトダイオードで検出することで入射ガンマ線のエネルギーを測定する。また シンチレータをセグメント化することで、電磁シャワーの3次元構造を捉えることが出来 る。トラッカーと組み合わせることで飛跡の決定精度が向上し、またシャワーの構造から 100 GeV 以上の吸収しきれないガンマ線のエネルギーの推定も可能になる。

図 1.10: カロリーメータの構造 [1]

Anti-concidence Detector(ACD)

ACD はトラッカーを覆う 89 枚のセグメント化されたシンチレータである。図 1.11 に ACD の構造を表すイラストを示した。光ファイバーを介して光電子増倍管によって荷電 粒子からの信号を読み出している。反同時計数によって、99.97%以上の荷電粒子バックグ ラウンドを除去できる。また、セグメント化したため、高エネルギーガンマ線の self-veto の影響を抑えることができる。self-veto とは、カロリーメータで生成される電磁カスケー ド中のガンマ線の一部がシャワーの向きと反対方向に出て (backsplash) それが ACD で検 出されるため、本来天体からの信号がバックグラウンドとして除去されてしまうことであ る。EGRET 検出器はこの self-veto のため 10 GeV 程度までしか感度がなかった。LAT で はセグメント化によって、ACD の信号が backsplash か、バックグラウンドかを判定する ことができ、エネルギー帯を大きく広げることに成功している。

図 1.11: ACD の構造。最上層の5×5のアレイとサイドの16枚が4層に渡って、計89枚 のプラスチックシンチレータが使われている。[1]

1.2.4 期待される成果

Fermiでは様々な高エネルギー現象の解明が期待されている。これまでのガンマ線観測 衛星に比べて大きく向上した位置分解能によって、これまでわからなかった天体の検出が 可能になる。EGRETでも9年間で271のガンマ線天体が検出されたが、他波長域に比べ ると少なかった。Fermiではすでに1年間でEGRETを大きく越える1451のガンマ線天 体が検出されている。このような性能の向上により、パルサーでの粒子加速とガンマ線放 射モデルの解明、高エネルギー宇宙線加速機構の解明などが期待されている。[9]

また、Fermiのもつ広い視野と広いエネルギー帯を利用してこれまでの他波長同時観測 にはなかったスムーズな連携が期待される。現在活躍しているX線観測衛星すざくや可 視光〜近赤外を観測できる広島大学所有の「かなた」望遠鏡との他波長同時観測によって 活動銀河核のジェット状粒子加速現象の解明、ガンマ線バーストの観測と粒子加速メカニズムの解明などが期待されている。

また、広い視野は広がったガンマ線放射の観測にも有効である。銀河面には星間ガスや 星間光子、宇宙線が存在しており、相互作用(反応)により強いガンマ線を出す。したがっ て、この銀河面からの広がったガンマ線の観測により星間物質と宇宙線を調べることが可 能である。本論文では特に太陽系近傍の分子雲領域について研究を行った。

第2章 宇宙線によるガンマ線放射機構

銀河系内の星間空間には、星間物質 (ガス)・星間磁場・星間光子に加えて、相対論的エネルギーまで加速された荷電粒子、すなわち宇宙線が存在し、互いに影響を及ぼしあっている。例えば宇宙線は、星間ガスの加熱・電離に寄与し、また星間磁場を介して星間ガスを重力に抗して支えると考えられている。[10]

宇宙線は星間ガス・磁場・光子と反応し、特に電波およびガンマ線で強い放射をする。 従ってガンマ線観測により、銀河経内の宇宙線を調べることが可能である。本章ではまず 宇宙線について概観し、次いでガンマ線の放射機構について述べる。

2.1 銀河系内の宇宙線

宇宙線の研究は近代物理学が誕生した 20 世紀の初めにさかのぼる。始まりは、充電の 後に絶縁された検電器が少しずつ電気を失う現象が見つかったことである。これは、検電 器内の空気が何らかの理由で電離され、そのイオンによって放電を起こしていると解釈さ れる。この電離を起こす原因が外からきていることは、検電器を厚い物質で囲むと放電の 度合が減ることからわかっていた。当初は大地にある何らかの放射性元素によるガンマ線 だと考えられていたが、1912 年から 1919 年にかけてオーストリアの Hess が気球実験を 行い、上空の電離の様子を調べ、電離が上空にいくほど増加していることを見い出し、放 射線が宇宙起源であることを示した。こうして地球の外からくる放射線である宇宙線の存 在は 1920 年代に確かめられた。Hess はこうして宇宙線を発見した功績で 1936 年にノー ベル物理学賞を受賞した。[11]

2.1.1 地球近傍で観測される宇宙線のエネルギー分布

宇宙線は数 10 MeV から 10²⁰ eV 以上まで非常に広いエネルギーを持った陽子から鉄以 上の重さにいたるあらゆる種類の原子核からなる。わずかに電子・陽電子も含んでいる。 図 2.1 に地球で観測された宇宙線のエネルギー分布 (粒子数スペクトル)を示す。

これを見るとわかるように1 GeV 以上の宇宙線のスペクトルはべき型ののっぺりした 形をしており、陽子のスペクトルのべきは 2.7 程度 (エネルギーを *E* として、フラックス が *E*^{-2.7} に比例する) である。さらにそのスペクトルにはいくつかの特徴が見られる。

• 10 GeV 程度以下では、高エネルギーからの延長よりもフラックスが下がる。

図 2.1: 地球近傍の宇宙線粒子のエネルギー分布 [12]

- 10^{15.5} eV 付近に knee と呼ばれる折れ曲がりが存在する。べきは急になり、およそ 3.0 になる。
- 10^{18.5} eV 付近に ankle と呼ばれる折れ曲がりが存在し、再びべきはフラットな形に なり、およそ 2.8 になる。

これらは、宇宙線が生成されてから地球に到達するまでの伝搬過程で受ける影響や、加 速源の情報を反映していると考えられる。

宇宙線は太陽活動の影響を大きく受ける。10 GeV 以下の粒子のスペクトルは11 年周期 で起こる太陽活動によって大きく変化することがわかっており、太陽活動が活発であると フラックスは小さくなり、太陽活動が穏やかであるときはフラックスが大きくなる。太陽 からは超音速のプラズマの流れ、太陽風が吹き出しており、この太陽風にひきずり出され た磁場によって宇宙線フラックスが減少し、またエネルギーが下がると考えられている。 これを太陽活動による宇宙線のモジュレーションと呼ぶ。[13] 10 GeV 以上のエネルギーを持つ宇宙線は太陽活動の影響をほとんど受けず、そのフラックスは時期によらずほぼ一定である。10¹⁵ eV 程度以下の粒子は銀河系内の星間磁場により銀河系内に閉じ込められていると考えられる。もし、銀河系内を自由に進んでいるとすれば、その到来方向の分布は非等方的になるはずだが、10¹⁵ eV 程度までのエネルギーの宇宙線の非等方性は 0.1 % 程度以下である。このことからも、宇宙線が銀河系内の乱流磁場による拡散を受け、かつ閉じ込められていると考えられる。10¹⁵ eV を越えると磁場の閉じ込めが効きにくくなり銀河系内から逃げ出しはじめるので、knee と呼ばれる折れ曲がりが出来るとされる。knee の原因は、加速エネルギーの上限にあるとする説もある。10¹⁸ eV 程度以上の宇宙線は典型的な星間磁場 (3 µG 程度) で、300 pc 程度以上、つまり銀河面の厚みと同程度のラーマー半径を持ち、銀河系に閉じ込めることは不可能である。

また、宇宙線電子の場合は陽子よりも急なべきを持つスペクトルになる。これは高エネ ルギー電子がエネルギーを失う過程である星間磁場によるシンクロトロン放射や星間光 子との逆コンプトン散乱では、高いエネルギーの電子ほど寿命が短いためである。

このように、宇宙線陽子や電子はさまざまな変調を受けて地球に到達してくるために、 直接観測だけでは銀河系内の宇宙線分布を知ることは難しい。しかし、これらの粒子は銀 河系内に広がる星間物質と相互作用することで電磁波を放射するので、そこから銀河系内 の宇宙線の情報を得ることができる。本研究では、こうして生成されるガンマ線を観測す ることで宇宙線の大半を占める宇宙線陽子と星間ガスの分布を調べることを目的として いる。ガンマ線放射の仕組については 2.2 節で詳しく述べる。

2.1.2 宇宙線の起源と加速

銀河系内の宇宙線の起源として有力なのは超新星残骸である。現在、超新星残骸が強い 電波源であることがわかっており、これは高エネルギー電子が磁場による制動を受けて出 すシンクロトロン放射である。電子が加速されていることから、宇宙線の主成分である陽 子加速も起きていると期待される。この宇宙線の加速機構として、超新星残骸の場合は衝 撃波面をまたいで粒子が何度も乱流磁場と衝突を繰り返してエネルギーを得るフェルミ加 速機構が有力である。Fermiのガンマ線観測からも、超新星残骸が宇宙線陽子の加速源と なっていることが示唆されている [14][15]。但し超新星残骸で加速しうるエネルギーは上 限 (10¹⁵ eV 程度) があり,より高いエネルギーの宇宙線は系外の超巨大ブラックホールで ある活動銀河核のジェットなどが起源と考えられる。

銀河系内に蓄えられた宇宙線と逃げ出していく宇宙線とのエネルギーのつりあいを考 える、エネルギー収支の観点からも、超新星残骸が有力な宇宙線起源候補になっている。 地球で測られた宇宙線のスペクトルが銀河系内で典型的だとすると、そのエネルギー密度 ρ_{cr} は、

$$\rho_{cr} \sim 1 \text{ eV cm}^{-3} \tag{2.1}$$

程度である。このエネルギー密度は星間磁場や星からの光、マイクロ波背景放射などのエ ネルギー密度と比べても桁で一致しており、星間空間に対する宇宙線の影響が無視できな いことを示唆している。

式 (2.1) から銀河円盤内に閉じ込められている宇宙線の総エネルギーは、銀河円盤の体積 V が 10⁶⁶⁻⁶⁷ cm³ であることを用いて、

$$E_{cr} = \rho_{cr} V \sim 10^{54-55} \text{ erg}$$
 (2.2)

と求められる。一方、先にも述べたように宇宙線は銀河円盤に広がる銀河磁場によって閉じ込められている。その閉じ込めの時間は Be の不安定同位体の測定から $\tau \sim 10^7$ 年程度と求められている。よって単位時間あたりに逃げ出す宇宙線のエネルギーは、

$$\frac{E_{cr}}{\tau} \sim 10^{40} \text{ erg s}^{-1}$$
 (2.3)

となる。これに対し、超新星の爆発では 10^{51} erg 程度のエネルギーが放出される。超新 星爆発が 30 年に 1 回起きているとすれば、そのエネルギー発生率は ~ 10^{42} erg s⁻¹ とな る。その 1% 程度が粒子加速に使われているとすれば、超新星爆発による宇宙線へのエネ ルギー供給は ~ 10^{40} erg s⁻¹ となり、式 (2.3) と一致している。このようにして宇宙線強 度が一定に保たれていると考えられるので、超新星残骸は、宇宙線起源として有力な候補 としてあげられている。[16]

2.2 ガンマ線の放射機構

2.1 で述べたように、宇宙線は伝搬の過程で、星間物質と衝突することで相互作用を起こし、電磁波を放射する。陽子は星間ガスと衝突し、原子核反応によってガンマ線を放出する。電子は、星間光子に衝突してエネルギーを与える逆コンプトン散乱を起こしてガンマ線を生成したり、星間ガス中の原子核に曲げられて制動放射でガンマ線を出す。

以下に宇宙線と星間物質との相互作用の中で、ガンマ線を生成する過程について述べる。

2.2.1 π^0 崩壊

まず、宇宙線の主成分である高エネルギー核子 (主に陽子) が起源となるガンマ線の生成プロセスについて述べる。宇宙線が星間物質と衝突するときに陽子の運動エネルギーがあるエネルギー (threshold energy) を越えると、 π 中間子が発生する。 π 中間子は核子同士を相互につなぎ、原子核を安定化する引力を媒介している粒子で、核子同士がぶつかりあって核子が激しくゆさぶられると、核子から振り落とされて独立することがある。中性の π 中間子である π^0 の平均寿命は8.4 × 10⁻¹⁷ 秒と極めて短く、直ちに崩壊し、式(2.4)に示すように光子 2 つに崩壊する。つまりここでガンマ線が発生する。図 2.2 に π^0 崩壊のプロセスの概念図を示す。

$$\pi^0 \to 2\gamma \tag{2.4}$$

図 2.2: π⁰崩壊の概念図

 π^0 中間子の質量は~140 MeV なので、静止系において 70 MeV のガンマ線を放出する。 実験室系にローレンツ変換すると、 π^0 中間子の進行方向に高いエネルギーのガンマ線を、 その反対方向に低いエネルギーのガンマ線を放射する。そのエネルギーの範囲は以下の式 で表される。[17]

$$\frac{m_{\pi}}{2}\sqrt{\frac{1-\beta_{\pi}}{1+\beta_{\pi}}} \le E_{\gamma} \le \frac{m_{\pi}}{2}\sqrt{\frac{1+\beta_{\pi}}{1-\beta_{\pi}}} \tag{2.5}$$

ここで m_{π} は π^{0} 中間子の質量、 β_{π} はその速度を光速度で割ったものである。上の式からわかるように、70 MeV を中心に対数で対象な分布になる。これに宇宙線のエネルギー分布と反応断面積を加味し、その重ね合わせとして得られるガンマ線のスペクトルを計算したものが図 2.3 になる。こうして作られるガンマ線のスペクトルの高エネルギー側のべきは宇宙線陽子のスペクトルのべきとほぼ一致する。

図 2.6 に、地球上で測られた宇宙線に基づくガンマ線モデルスペクトルを示す。赤の実 線が π⁰ 崩壊によるものである。光子数スペクトルにエネルギーの 2 乗をかけて示してあ り、そのため 1 GeV 付近にふくらみを持つ。高エネルギー側でのべきは、宇宙線陽子の それとほぼ一致している。

2.2.2 制動放射

高速の電子または陽電子が原子核の近傍を通ると、電場のために急激に進路が曲げられる。この進行方向の変化によって加速をうけ電磁波を放出する。これが宇宙線電子と星間物質との間で起こることでガンマ線が放射される。図 2.4 に制動放射のプロセスを概念 図で示す。制動放射による宇宙線電子のエネルギー損失は以下の式で表される。

図 2.3: 宇宙線と星間ガスの反応の結果、 π^0 崩壊によって生じるガンマ線のスペクトル。 (a) は宇宙線陽子と水素の反応のみ、(b) は宇宙線と星間ガスの化学組成を加味している。 [18]

$$-\frac{1}{E}\left(\frac{dE}{dt}\right)_{bremss} = 4NZ^2 r_e^2 \alpha c\bar{g} \tag{2.6}$$

N は的となるガスの密度、Z はそのガスの原子番号である。古典電子半径 r_e と構造微細定数 α は定数で、それぞれ $r_e \sim 2.82 \times 10^{-15}$ m、 $\alpha \sim 1/137$ である。 \bar{g} は電子のエネルギーや電離状態に弱く依存する係数で $\bar{g} \sim 1$ である。この式で表されるように制動放射によるエネルギー損失は入射する電子のエネルギーに比例する。

エネルギー *E_e* を持つ電子による制動放射は、電子のエネルギーまでほぼフラットなエネルギースペクトルを持つ。よって単位時間、単位エネルギーあたりに放出されるガンマ線の個数を *N*(*ϵ*) とすると、

$$N(\epsilon)d\epsilon = \alpha N \frac{d\epsilon}{\epsilon} \quad (\epsilon \le E_e) \tag{2.7}$$

となる。ここで ϵ はガンマ線のエネルギーである。 α は比例定数で、星間ガスの組成を考慮 すると $\alpha \sim 10^{-21}$ m³ s⁻¹ となる。従って、入射電子の粒子数スペクトルが $N_e(E) = \kappa E^{-p}$ のとき、制動放射によるガンマ線の光子数スペクトルは以下のようになる。

$$I_{bremss}(\epsilon) = \int_{\epsilon}^{\infty} \frac{\alpha N}{\epsilon} \kappa E^{-p} dE = \frac{\alpha N \kappa}{p-1} \epsilon^{-p}$$
(2.8)

積分を ϵ から始めているのは、 ϵ のエネルギーを持つガンマ線を放射するためには入射 電子のエネルギーも ϵ 以上が必要だからである。この式からわかるように制動放射による ガンマ線スペクトルのべきは電子のスペクトルのべきと同じになる。制動放射によるス ペクトルの計算例を図 2.6 に示す (紫の実線)。電子のスペクトルを反映して、 π^0 崩壊によ るものより急なスペクトルを持つことがわかる。低エネルギー側でフラックスが下がるの は、電離によって電子のフラックスが下がるためである。[18]

図 2.4: 制動放射の概念図

2.2.3 逆コンプトン散乱

高いエネルギーの光子が電子にぶつかり、電子にエネルギーを与えるコンプトン散乱と は逆に、高いエネルギーの電子が光子にぶつかって光子にエネルギーを与える現象が逆コ ンプトン散乱である。逆コンプトン散乱のプロセスの模式図を図 2.5 に示す。この反応が 宇宙線電子と星間光子との間で起こるとガンマ線が放射される。エネルギー密度 U_{rad} 下 の逆コンプトン散乱によるエネルギー損失の式は以下で表される。

$$-\left(\frac{dE}{dt}\right)_{IC} = \frac{4}{3}\sigma_T c\gamma^2 U_{rad} \tag{2.9}$$

ここで σ_T はトムソン散乱の断面積、c は光速、 γ は電子のローレンツ因子である。逆コ ンプトン散乱によるエネルギー損失は電子のもつエネルギーの2乗に比例する。

エネルギー *E_e* を持つ電子によって逆コンプトン放射される光子のエネルギーの平均 値は、

$$K = \frac{4}{3}h\nu_0\gamma^2 \tag{2.10}$$

これを計算しやすいようにエネルギー値を代入して変形すると、

$$K \sim 0.5 \left(\frac{h\nu_0}{1 \text{ eV}}\right) \left(\frac{E_e}{10 \text{ GeV}}\right)^2 [\text{GeV}]$$
 (2.11)

となる。つまり、10 GeV の宇宙線電子が1 eV の可視光を逆コンプトン散乱すると、約 500 MeV のガンマ線が放射されるということになる。

実際にはさまざまなエネルギー E_e の電子が存在する。今 $E_e \sim E_e + dE_e$ の中に $dN_e \propto E_e^{-p} dE_e$ 個の電子が存在するとすれば、光子は E_e^2 に比例するエネルギーを持つので、光子には、

$$E_e^2 \cdot E_e^{-p} dE_e \tag{2.12}$$

に比例するエネルギーが与えられる。式 (2.10) が示すように入射する電子のエネルギー E_e と放射される光子のエネルギー K との間には $K \propto E_e^2$ の関係があるので、

$$E_e \propto K^{1/2}, \quad dE_e \propto K^{-1/2} dK$$
 (2.13)

となる。これを (2.12) 式に代入すると、放射される光子のエネルギースペクトルは、

$$\propto K^{-\frac{p-1}{2}}dK \tag{2.14}$$

となる。従って、放射光子の光子数スペクトルは、

$$\propto K^{-\frac{p+1}{2}}dK \tag{2.15}$$

で表される。つまり、入射する電子のスペクトルのべきがpならば、放射される光子のスペクトルのべきは $\frac{p+1}{2}$ になる。10 GeV 程度の高いエネルギーをもつ電子のスペクトルの べきはp=3くらいなので、放射されるガンマ線のスペクトルのべきは2となり制動放射 や π^0 崩壊で放射されたものよりフラットになる。逆コンプトン散乱によるスペクトルの 計算例を図 2.6 に示す (緑の実線)。このように逆コンプトン散乱は制動放射に比べてより 高いエネルギーに寄与してくる。[16]

図 2.5: 逆コンプトン散乱の概念図

2.3 ガンマ線観測の意義

宇宙線は上に述べたような過程によって星間ガスや光子と反応して広がったガンマ線 (ディフューズガンマ線と呼ぶ)を放出する。従って星間ガスの分布が既知であれば、ガン マ線観測から宇宙線自体の空間分布やエネルギー分布を調べることが可能になる。逆にこ うしてわかった宇宙線分布を用いて、星間ガスの物質分布を知ることもできる。ガンマ線 の放射率は物質の温度などの状態に依存しないので、電波観測などでは不定性のあった、 宇宙線および星間ガスの両方を調べる上でガンマ線観測は強力な手段になる。また、調べ る領域の広がったガンマ線放射の様子がわかれば、それらがバックグラウンドになるため に解析が困難だった、ガンマ線天体の詳細なスペクトル解析も可能になる。本研究では分 子雲領域からの広がったガンマ線を研究する。分子雲は主成分である H₂ が通常の環境で は電波を出さないため、ガスの分布に不安性が大きい。また星生成の現場でもあるので、 宇宙線の源にもなりうる。従って広がったガンマ線により、星間物質・宇宙線の双方を調 べるのに適した対象である。

図 2.6: 宇宙線と星間物質との相互作用によって放射される広がったガンマ線のデータお よびモデルスペクトル。銀緯が 10° < |b| < 20°の全領域の平均をとったものである。赤 線はπ⁰崩壊、紫線が制動放射、緑線が逆コンプトン散乱。これらに青で表されるガンマ 線点源からの放射とバックグラウンド成分を足し合わせて作られたモデルが黒の斜線で示 されている。赤の丸印は Fermi のデータである。[19]

第3章 分子雲の一般論

星と星との間の空間、星間空間は何もない空間ではなく、星間磁場・光子・宇宙線に加 えて、星の材料となると星間ガスと星間ダスト (微粒子)、すなわち星間物質が存在する。 星間物質の総質量は10¹⁰ M_☉程度で、これは我々の銀河系のバリオン質量の約10%にあ たる。この星間物質の質量はそのほとんどをガスが担い、ダストはその1/100程度であ る。ダストとは 0.1 μm 程の大きさの個体微粒子であり、背景の星の光を吸収するので、 可視光の減光として観測される。質量は小さいが、赤外線を放射して星間ガスを暖めた り、表面での触媒反応によって星間分子の生成を促進したりする。

星間物質と星間磁場・光子・宇宙線は互いに影響を及ぼしあって銀河の物質進化に寄与 している。以下では星間ガスについて概観し、次いで分子雲について詳しく述べる。

3.1 星間ガス

星間ガスは、温度や密度の異なる様々な形態を持つ。以下に各々の特徴を述べていく。

- 低温中性ガス (Cold Neutral Medium)
 星間ガスの主成分は原子状態の中性水素ガス H_I である。そのほとんどは、密度 20-50 cm⁻³ 程度、温度 100 K 程度の状態にあり、これを低温中性ガス (Cold Neutral Medium; CNM) という。体積は星間物質の数%程度であるが、密度が高いため質量は大きい。低温中性ガスは中性水素が出す波長 21 cm の電波で観測される。水素原子は1 個の陽子と1 個の電子から構成されており、ともにスピン¹/₂のフェルミ粒子である。従って陽子と電子のもつスピンが平行な状態と反平行な状態の2 種類があり、スピンが平行な状態の方がわずかにエネルギーが高い。よって反平行な状態に遷移するとき、その余剰分のエネルギーを電磁波として放射する。これは周波数1420 MHz の電波であり、21 cm 線と呼ばれる。
- 高温中性ガス (Warm Neutral Medium)
 21 cm 線には CNM からの幅の狭い輝線に加え、ずっと幅の広い輝線が存在する。これは温度の高い中性水素ガス (Warm Neutral Medium; WNM) によるものである。その原因は宇宙線による加熱やダストによる光電離加熱と考えられている。この領域は温度は約 10000 K にもなり、密度は 0.2-0.5 cm⁻³ 程度で、銀河系内の星間空間の 10-20 %の体積を占める。

- 高温電離ガス (Warm Ionized Medium)
 - O型星、B型星の周りには、星からの強力な紫外光で電離された、密度が高く (\geq 100 cm⁻³)、コンパクトな (~ 1 pc) 領域が存在する。これらを電離水素領域 (H_I 領域) という。この H_I 領域の外部にも高温の電離ガスが存在し、これを高温電離ガス (Warm Ionized Medium; WIM) という。密度はずっと小さいが、1 kpc 程度という大きなスケールハイト、つまり大きな体積を持つ。水素イオンと電子の再結合の際に生じる H α 輝線や電波パルサーのパルス位相の周波数によるずれ (Dispersion Measure; DM) などで観測される。

 コロナガス (Hot Ionized Medium) 超新星爆発によって発生した衝撃波によって加熱されてほとんどの元素がイオン化 された状態で存在するものを、超高温電離ガス (Hot Ionized Medium; HIM)、また はコロナガスと呼ぶ。温度は 10⁶ K、密度は 0.01 cm⁻³ 程度である。質量はごくわ ずかだが、体積は星間空間のおよそ半分を占める。この領域は軟 X 線背景放射およ び紫外線の吸収として観測される。

分子雲 (Molecular Cloud)
 星間物質の中では、他よりも温度が低く密度が高いために物質が分子状態で存在している領域がある。その領域は温度が10 K、密度は10² – 10⁶ cm⁻³ 程度であり、これを分子雲 (Molecular Cloud; MC) という。多くの場合はH_I ガス中に粒状に分布している。体積は1%以下であるが、密度が高いため星間物質の全質量の約20%を占める。主にCO分子の回転準位間の遷移による輝線を用いて観測される。ダストによる可視減光や赤外線放射によっても観測可能である。

以上が星間空間に広がったガスの主な形態である。表 3.1 にそれぞれの形態の物理パラ メータをまとめる。

	温度 (K)	数密度 (cm ⁻³)	質量 $(10^9 M_{\odot})$	主な観測手段
分子雲	10-20	10^{2-6}	$\sim 1.3 - 2.5$	CO 2.6 mm 線
低温中性ガス	50-100	20-50		$H_I 21 \text{ cm}$ 線
高温中性ガス	6000-10000	0.2-0.5	$\right\} \ge 0.0$	$H_I 21 \text{ cm}$ $\$$
高温電離ガス	~ 8000	0.2 - 0.5	≥ 1.6	Hα線、パルサー DM
コロナガス	$\sim 10^6$	~ 0.01		軟 X 線

表 3.1: 星間ガスの各形態ごとの物理パラメータ [10]

星間ガスは星およびダークマターの作る重力ポテンシャルにより、銀河中心のまわりを 回転している。回転速度と銀河中心からの距離の関係を図 3.1 に示す。この回転曲線を用 いると、輝線のドップラーシフトから距離が分かるので、銀河系内での3次元的位置が分 かる。H_I の 21 cm 線や CO 分子からの 2.6 mm 線は、原子ガス・分子ガスの分布を知る 強力な手段となっている。

図 3.1: 銀河系の回転曲線 [20]

3.2 分子雲の観測

前節で述べたように分子雲とは、他の領域に比べて低温で高密度なために物質が分子 状態で存在している領域のことである。通常、星間空間では原子同士が衝突して分子状 態になっても、星からの遠赤外線によって解離されて原子状態に戻ってしまう。しかし、 ガス密度が高い領域には多量のダストが含まれているので、遠赤外線がダストに吸収さ れて星間ガスの内部まで入ってこないために、物質が分子状態で存在することができる。 分子雲の主成分は水素分子であるが、それ以外にも一酸化炭素 (CO) やアンモニア (NH₃) など約 130 種類の分子が確認されている。分子雲はその後、重力収縮して、分子雲コアを 形成し、原始星から恒星へと進化していく。そのために分子雲は、星形成の現場としても 重要な研究対象である。

分子雲は可視光・電波・ガンマ線などで観測される。以下にそれぞれの波長での分子雲 の観測について詳しく述べていく。

3.2.1 可視光による観測

星間微粒子 (ダスト) は原子ガス・分子ガスの両方とよく混在している。従ってガス密度 の高い分子雲には多量のダストが含まれ、背景の光を吸収・散乱する。このため分子雲は 可視光では、星の少ない暗い領域、暗黒星雲として観測される。実際、分子雲の探査は、 この暗黒星雲の探査として始まった。図 3.2 はオリオン座の馬頭星雲であり、暗黒星雲の 一例となっている。

図 3.2: 可視光で見るオリオン座の馬頭星雲。背景の星からの光が吸収されて見ることが できない [21]

3.2.2 電波による観測

分子雲は一般に低温なため、可視光や赤外線を放射することはできない。しかし 10-20 K 程度の低温でも分子の回転遷移は起きるため、ミリ波・サブミリ波での観測が可能とな る。分子雲の主成分である水素分子にはこの回転遷移が存在しないために水素分子に次い で多い CO の回転遷移が主に利用される。T.M. Dame らは ¹²CO の分子輝線 (*J* = 1 - 0, 2.6 mm)による全銀河面の観測を行い、銀河系内の分子雲の大局的な分布を明らかにし た。現在では、名古屋大学がチリに設置した「なんてん」や「NANTEN2」によるさら に高角分解能の観測が行われている。図 3.3 に、Dame らの観測で得られた ¹² CO からの 2.6 mm のマップを示す。分子雲は 100 pc 程度と小さいスケールハイトを持つので、銀河 面上の分子雲はマップ中で薄い帯として見られる。太陽系近傍の分子雲は銀河面からやや 離れたところに観測される。有名なオリオン座の分子雲は銀経 210°、銀緯 - 20° あたりに 位置している。その他カメレオン座 (銀経 300°、銀緯 - 15° あたり)、南のかんむり座 (銀 経 0°、銀緯 - 20° あたり)といった分子雲が確認できる。また銀河面上の分子雲は、先に 述べたように銀河回転を用いて速度的に分離することも可能である。

図 3.3: ¹²COの回転遷移 2.6 mm ラインで見た銀河面 [22]

このように CO からの電波を用いた方法は強力だが、分子ガスの主成分である H₂ を直接見ているわけではない。CO 輝線の強度と水素分子の柱密度の比は、様々な手段により $(1-3) \times 10^{20}$ cm⁻² (K km/s)⁻¹ と見積もられているが、不定性も大きい。

3.2.3 ガンマ線による観測

2章で述べたように宇宙線と原子核が衝突すると核子-核子反応によって高エネルギー のガンマ線が放射される。従ってガス密度の高い分子雲は、強いガンマ線源となる。ガン マ線は分子雲の主成分である水素分子から放射され、その放射率は物質の温度や状態に依 存しない。従って、ガンマ線観測により、分子ガスの分布を直接見ることが原理的に可能 である。もちろん実際には、観測領域内の原子ガスからの放射や、ガンマ線源の寄与も評 価しなければならない。

これまでも EGRET などで分子雲からのガンマ線はとらえられてきた。図 3.4 はオリ オン座分子雲がある領域を CO の輝線で見たマップと EGRET を用いてガンマ線で見た マップである。これを見ると、CO の輝線強度が強いところでは、ガンマ線の強度も強く なっていて、両者の間には相関があることが確認できる。この結果は、電波では直接見る ことができなかった分子雲内の水素分子を EGRET を用いてガンマ線で直接見ることに 成功したことを意味している。さらに現在では、Fermi での高感度の観測が可能になり、 ガンマ線でさらに詳細な研究が可能になった。例えば、先に述べた水素分子と CO 分子か らの輝線強度の比を、より細かい領域に区切って調べることができる。また EGRET で 調べられたのは $10^5 M_{\odot}$ 程度の巨大な分子雲に限られていたが、より小さなターゲットも 観測可能となった。これにより、幅広いサンプルで物質分布が議論できるようになった。 また分子雲は一般に星形成の場でもあり、その領域での宇宙線強度や、ガンマ線源の探査 も重要である。

図 3.4: オリオン座分子雲。CO の 2.6 mm ラインで見たイメージ (左) と EGRET による ガンマ線イメージ (右)。[23]

3.3 近傍の分子雲とターゲットの選択

これまでの多波長にわたる観測によって、多くの分子雲が太陽系近傍で確認されてきた。前節で述べたように、太陽系近傍の分子雲は図 3.3 で銀河面から離れたところに観測 される。図 3.5 は銀河面を上から見たときに太陽系を中心として、そこから半径1 kpc 内 にある分子雲の質量と位置を表した図である。円周はその分子雲の位置を銀経で示してい る。また分子雲の円の大きさが分子雲の質量を、模様が銀河面からどれだけ離れているか を示している。これらのうち、EGRET ではオリオン座分子雲 (Orion) やケフェウス座分 子雲 (Cepheus) などの観測が行われていた [24]。

Fermi 衛星を用いた本研究では、これまでガンマ線観測ができなかった 10⁴ M_☉ 以下の 比較的小型で、銀河面から離れているものを選ぶことにした。これにより幅広いサンプル で物質や宇宙線の分布を議論できる。銀河面から離れているという条件は、解析するにあ たってバックグラウンドとなる銀河面からの広がったガンマ線放射の影響を小さくするた めに課した。以上の条件を踏まえて、図 3.5 の中から R CrA(南のかんむり座) 分子雲を解 析のターゲットとして選んだ。

次章からこのR CrA分子雲の解析の方法と結果を述べる。加えて、他の分子雲領域や、 近傍の星間ガスからのガンマ線観測との比較・議論を行う。

図 3.5: 太陽系から1 kpc 以内に存在する分子雲の位置とその質量。円の大きさが分子雲 の質量、座標が太陽系からの距離および銀河座標における位置する方向を、模様が銀河面 からの距離を表している。[25]

第4章 分子雲R CrAからのガンマ線 放射

まず、4.1章で使用したデータの構造やイベントセレクションおよびモデルについて説 明する。その後に4.2章でデータ解析結果を検証とともに述べ、最後に4.3章で太陽系近 傍の宇宙線と物質分布を議論する。

4.1 解析方法

4.1.1 使用したデータ

天体からのガンマ線信号は、地球に降り注ぐ宇宙線の10⁻⁵程度しかない。また Fermi 衛星は~10⁶にもおよぶ膨大なチャンネルを持つ検出器で構成されるので、これら検出器 のノイズも無視できない。そこでまず、軌道上で必要最低限の処理を行い、ガンマ線事象 の候補を選び出す。具体的には3つ以上の連続した TKR のレイヤーでヒットがある、飛 跡を再構成した先の ACD タイルにヒットがない、などの条件を課す。これをオンボード フィルタという。こうして Fermi 衛星から地上に送られたばかりのデータは raw data と 呼ばれる。地上ではさらに詳細なフィルタをかけ、ガンマ線事象の候補を選び出し、また 解析しやすいように必要な情報のみを FITS(Flexible Image Transport System) と呼ばれ る形式のファイルに変換される。FITS とは天文学業界標準のファイル形式で、これによ り世界中の研究者が自由にデータを解析できるようになる。Fermi データの FITS ファイ ルには FT1 と FT2 の2種類がある。FT1 には光子の情報が、FT2 には衛星の情報が書き 込まれている。FT2 は通常は30 秒毎の位置情報が書かれているが、ガンマ線バーストに 対しては1秒毎の位置情報が書かれたものを使うこともある。表 4.1 および表 4.2 に FT1 と FT2 それぞれのデータフォーマット、つまり書き込まれている情報を示す。

表 4.1: FT1 ファイルのデータフォーマット [26]

名前	形式・単位	意味
ENERGY	MeV	エネルギー
RA	degree	到来方向の赤経
DEC	degree	到来方向の赤緯
L	degree	到来方向の銀経 (0° – 360°)
В	degree	到来方向の銀緯
THETA	degree	光子と LAT 検出器の成す傾斜角
PHI	degree	光子と LAT の成す方位角
ZENITH_ANGLE	degree	光子と地球の天頂の成す傾斜角
EARTH_AZIMUTH_ANGLE	degree	光子と地球の天頂の成す方位角1
TIME	秒	到来した時間2
EVENT_ID		イベントナンバー
RUN_ID		データそれぞれが持つ ID ナンバー
RECON_VERSION		再構成に用いたソフトウェアのバージョン
CALIB_VERSION		検出器のキャリブレーションのバージョン
EVENT_CLASS	1-3	ガンマ線らしさの指標
CONVERSION_TYPE	0 or 1	対生成が起きた場所が薄い層 (0) か厚い層 (1) か
LIVETIME	秒	LAT の livetime のミッション開始時からの積分

図 4.1 に本研究で用いた FT1 ファイルに書き込まれている光子の情報の一部を示した。 カラムは各々の光子ごとの情報になっており、全てのイベントに関して情報が羅列してあ る。標準形式にしたことで、fv という共通のソフトウェアを用い、このように簡単にデー タの中身を確認することができる。

イベントセレクション

FT1 ファイル (光子の候補リスト)から、本研究に適したものだけを選び出すため、さらにイベントセレクションを行った。条件を表 4.3 にまとめる。

¹北が 0°、東が 90°、南が 180°、西が 270° として定義されている。

²MET(Mission Elapsed Time)を用いている。2001 年 01 月 01 日 00 時 00 分 00 秒 (UTC) からの経過 時間で表す。

³South Atlantic Anomaly;ブラジル上空の南大西洋地磁気異常帯。荷電粒子が多く存在する領域である。

⁴F ならば SAA 通過時期ではない。

表 4.2: FT2 ファイルのデータフォーマット [26]

名前	形式・単位	意味
START	秒	時間ブロックの開始時刻2
STOP	秒	時間ブロックの終了時刻2
SC_POSITION	(m,m,m)	地球中心慣性座標系における衛星の (x, y, z) 座標
LAT_GEO	degree	衛星の緯度
LON_GEO	degree	衛星の経度
RAD_GEO	m	衛星の高度
RA_ZENITH	degree	検出器の天頂の赤経
DEC_ZENITH	degree	検出器の天頂の赤緯
B_MCILWAIN	Gauss	McIlwain のBパラメータ
L_MCILWAIN	地球半径	McIlwain のLパラメータ
GEOMAG_LAT	degree	地磁気緯度
IN_SAA	T/F^{4}	衛星がSAA ³ に入っているか
RA_SCZ	degree	S/C+z 軸の赤経
DEC_SCZ	degree	S/C+z 軸の赤緯 (S/C+z 軸)
RA_SCX	degree	S/C+x 軸の赤経
DEC_SCX	degree	S/C+x 軸の赤緯
RA_NPOLE	degree	north orbital pole の赤経
DEC_NPOLE	degree	north orbital pole の赤緯
ROCK_ANGLE	degree	衛星のz軸が天頂と成している角度
LAT_MODE	1-7	衛星の観測モード
LAT_CONFIG	0-1	LAT の設定
DATA_QUAL	0-3	データの質を示す指標
LIVETIME	秒	START から STOP の間の livetime

表 4.3: イベントセレクション

観測期間	2008/08/04 - 2009/12/31:17ヶ月
	(MET : 239557417 - 283995400)
エネルギー範囲	$200 {\rm ~MeV} - 10 {\rm ~GeV}$
Source Class	Diffuse Class(CTB_CLASS_LEVEL=3)
Zenith Angle	< 105 [deg]
Rocking Angle	< 52 [deg]
レスポンス	P6_V3_DIFFUSE
ScienceTools バージョン	v9r15p2

Select All Invert	_ ENERGY E MeV Modify	_ RA E deg Modify	」 DEC E deg Modify	_ L E deg Modify	_ B E deg Modify
1	2.427898E+02	1.025467E+02	3.063356 E +01	1.850294E+02	1.318925E+01
2	2.988690E+03	5.585948E+01	2.893779E+01	1.624930E+02	-2.042576E+01
3	1.509084E+02	4.300962E+01	7.746009E+01	1.294510E+02	1.614183E+01
4	4.823064E+02	1.989395E+02	6.543875E+01	1.188767E+02	5.149761E+01
5	5.004242E+02	4.717268E+01	2.667871E+01	1.573148E+02	-2.687902E+01
6	4.630946E+03	1.247550E+02	4.361602E+01	1.767781E+02	3.369920E+01
7	1.008776E+02	2.116790E+02	3.980775E+01	7.680172E+01	6.989462E+01
8	1.532004E+04	1.832968E+02	4.566423E+01	1.427403E+02	6.996480E+01
9	3.161169E+02	7.969001E+01	6.351889E+01	1.479950E+02	1.459616E+01
10	1.249031E+03	7.086072E+01	4.577581E+00	1.926814E+02	-2.570296E+01

図 4.1: FT1 ファイルの一部。各光子ごとに情報が書き込まれている。

• 観測期間

Fermi 衛星は 2008 年 8 月より科学観測を開始した。ここから 2009 年末までの 17ヶ 月分のデータを用いて解析を行った。

• Source Class

公開されている FT1 ファイルは、汎用性をもたせるため、比較的「ゆるい」セレク ションしかかけられていない。従ってガンマ線バーストのような短期間の明るいイ ベントには十分だが、本研究のような広がったガンマ線の解析には不十分である。 そこで「ガンマ線らしさ」を示す指標としてイベントクラス (CTB_CLASS_LEVEL) が設けられている。これはガンマ線イベントであるかの確からしさの指標を1~3 の3段階で表したもので、数字が高い程ガンマ線イベントである可能性が高い。そ れぞれの class には名前がついており、1が Transient Class、2が Source Class、3が Diffuse Class と呼ばれている。本研究のような広がったガンマ線の解析には Diffuse Class が推奨されており、それに倣った。

• Zenith Angle

Zenith Angle とは天頂と入射ガンマ線がなす角度のことである。地球大気からは宇宙線との相互作用により強いガンマ線が放射され、バックグラウンドになる。Fermi 衛星は全天をなるべく一様に見るために、衛星の視野を天頂方向から傾けている。 そのために、大気ガンマ線が最も強くなる地球のへり方向が視野に入ってしまう。 この大気ガンマ線の混入を防ぐために、Zenith Angleが 105°以上のイベントは除去 する。[27]

• Rocking Angle

上で述べたように Fermi 衛星は視野を天頂方向から傾けている。この検出器の向い ている方向と天頂の成す角度を Rocking Angle と呼ぶ。これは通常 50° 以下に抑え られているが、ガンマ線バーストが起きたときなどはその方向に向けられるため大 きな値をとり、結果として大気ガンマ線の混入が大きくなることがある。このよう な時期を除くため、Rocking Angle が 52°を越えるときのイベントは除去する。

4.1.2 解析の手法

Fermi 衛星のデータ解析を行うにあたり、解析ソフトとして Fermi 衛星用解析ツール Science Tools を用いた。これは Fermi チームによって開発されたソフトであり、イベン トセレクションから最尤法を用いたモデルフィッティングまでの一連の解析を行うこと が出来る。本研究の解析に用いた Science Tools のバージョンは v9r15p2、レスポンスは P6_V3_DIFFUSE である。扱ったデータは1年半という膨大なものであり、また解析の 妥当性を確認するためモデルフィッティングも何度も繰り返す必要がる。そこで Science Tools を C-shell や python といったスクリプト言語を用いて動かして効率的に解析を行った。

実際の解析の方法を以下に述べる。図 4.2 は Fermi 衛星でとらえた R CrA 分子雲領域 のガンマ線カウントマップ (E>200 MeV) を $\sigma = 0.5^{\circ}$ のガウシアンでスムージングした図 である。緑のコントアは CO の 2.6 mm 線で見たときに R CrA 分子雲がある場所を示し ている [22]。黄色の枠で囲んだ領域が本研究で解析した (フィッティングを行った) 領域で ある。具体的には銀緯が $-30^{\circ} \le b \le -10^{\circ}$ 、銀経が $-25^{\circ} \le l \le 5^{\circ}$ の領域である。緑の十 字点はガンマ線源がある場所で、Fermi 衛星の1年カタログから取得した。水色の枠の中 にあるガンマ線源とガスからの放射も解析では考慮した。これは特に低エネルギーで角度 分解能が悪くなるので、解析領域内への漏れ込みを考慮するためである。

得られたガンマ線信号は、個々のガンマ線源からの放射と、宇宙線と星間ガスや光子との反応で生じる放射の重ね合わせと考えられる。2.2節で述べたように、星間ガスからのガンマ線放射のフラックスは、宇宙線強度が一定であればガスの柱密度に比例する。そこでガンマ線マップを、星間ガスなどのマップとガンマ線源の重ね合わせでモデル化した。この解析方法は、広がったガンマ線に対する手法として、既に成果をあげている。[28][29]

用意したモデルマップ

• H_Iマップ

原子ガスの分布は水素原子からの 21 cm 線で直接測ることができる [30]。21 cm 線 の強度を水素原子の柱密度に直すには、自己吸収の影響、つまり光学的厚みを考慮 しなければならない。これは通常スピン温度 (*T_s*) という単一のパラメータで記述さ

図 4.2: R CrA 分子雲領域のガンマ線カウントマップ

れる。本解析では、これまでのガンマ線解析に倣い $T_S = 125$ K を仮定した。この スピン温度の不定性の影響は 4.2 節で評価する。

3.1 節で述べたように、21 cm 線の分布は一般には、回転曲線を用いることで3次元的に知ることができる。R CrA 領域は銀河中心方向に位置しており、この方法は使えないため、単一の H_{I} マップのみを準備した。ただし、銀緯が比較的大きい $(|b| > 10^\circ)$ ため、ほとんどは近傍 (≤ 1 kpc)の原子ガスを見ているとみなせる。

• COマップ

分子ガスは CO 分子からの 2.6 mm 線でトレースすることができる。その強度は、輝度温度をドップラーシフトで積分した量、W_{CO}(K km s⁻¹)で表す。これは分子ガスの柱密度を示す指標になる。

COマップについても H_I マップと同様に、単一のマップのみを準備した。3.2.2節で も述べたように分子雲は、原子ガスよりさらにスケールハイトが小さいので、ほと んど近傍の分子ガスを見ているとみなせる。

E(*B* - *V*)_{res}マップ
 COのラインは分子ガスの主成分である水素ガスを直接トレースしているわけではない。一方で、ダストは原子ガスと分子ガスの双方と共存するので、ダストの存在

量によって、領域内の全ての星間ガスの存在量を推測することができる。EGRET によるガンマ線観測と、電波観測とダストからの熱放射 (赤外線) との比較を行った Grenier らは、原子ガスと分子ガスの境界付近に H_I や CO の電波観測ではトレース できない星間ガスが存在することを示した [31]。そこで彼らの方法に倣い、ダスト からの熱放射をもとに作成された E(B - V) マップ (赤化マップ)を用い、これを $N(H_I) と W_{CO}$ マップでフィットし、残差マップである $E(B - V)_{res}$ を用意した。こ れは $N(H_I)$ および W_{CO} でトレースできない星間ガスを表すと期待される。このガ スマップの必要性は 4.2.1 節で検証する。

図 4.3: R CrA 分子雲領域の $E(B-V)_{res}$ ガスマップ。左上が $N(H_I)$ マップ、右上が W_{CO} マップ、下が $E(B-V)_{res}$ マップ。

図 4.3 に、R CrA 分子雲領域におけるこれらのガスマップを示す。

これらの他に、逆コンプトン散乱によるガンマ線放射、ガンマ線源の寄与、銀河系外からの広がったガンマ線を含めたバックグラウンドを加える必要がある。

3章で述べたように、逆コンプトン散乱による放射は宇宙線電子と星間光子の衝突に よって起こる。本研究では、Porter らが GALPROP コードを用いて計算した逆コンプト ン散乱モデル参照する [32]。GALPROP とは、銀河系内の宇宙線の伝搬と、星間物質や光 子との相互作用によるガンマ線放射を計算する数値計算コードである。ここでは Fermi 衛 星によって観測された太陽系近傍の宇宙線電子の分布を取り込んだモデル (54_77Xvarh7S という番号がついている) を使った [33]。

ガンマ線源については、Fermiの1年カタログを参照した[9]。ただし、有為度が低いものはガンマ線源ではない可能性もある。そこで取り込む点源の有為度の下限を4.3節で決める。

これまで述べたもの以外に、銀河系外からの一様なガンマ線放射と装置のバックグラ ウンドを考慮する必要がある。これらの一様なバックグラウンド成分は、Fermi チームに よって NASA のホームページにて公開されている標準モデル¹を用いた [34]。このデータ には、エネルギーごとのバックグラウンドの強度が記述されている。本研究では、この成 分はガンマ線データのフィッティングを行うにあたって、値を固定した。4.2.4節で、この 一様成分の不定性による系統誤差の評価を行う。

解析方法

これまで述べたようにガンマ線放射 $I_{\gamma}(l,b)$ (s⁻¹ cm⁻² sr⁻¹ MeV⁻¹) は以下のようにモデル化することができる。

$$I_{\gamma}(l,b) = q_{\rm HI} \cdot N({\rm H}_{\rm I})(l,b) + q_{\rm CO} \cdot W_{\rm CO}(l,b) + q_{\rm EBV} \cdot E(B-V)(l,b) + I_{\rm IC}(l,b) + I_{\rm iso} + \sum_{i} {\rm PS}_{j}$$
(4.1)

ここで、 $q_{\rm HI}(s^{-1} \text{ sr}^{-1} \text{ MeV}^{-1})$ 、 $q_{\rm CO}(s^{-1} \text{ cm}^{-2} \text{ sr}^{-1} \text{ MeV}^{-1} (\text{K km s}^{-1})^{-1})$ 、 $q_{\rm EBV}(s^{-1}\text{ cm}^{-2} \text{ sr}^{-1}\text{MeV}^{-1}\text{mag}^{-1})$ はそれぞれ、水素原子1個あたり、単位 $W_{\rm CO}$ あたり、単位 $E(B-V)_{\rm res}$ あたりのガンマ線放射率である。 $I_{\rm IC} \ge I_{\rm iso}$ はそれぞれ、逆コンプトン散乱モデルと一様なバックグラウンドの強度 (s⁻¹ cm⁻¹ sr⁻¹ MeV⁻¹)を表す。 PS_i はガンマ線源の寄与を示す。

本研究では、200 MeV-10 GeV のエネルギー範囲を対数スケールで 11 のエネルギーバンドに区切って各エネルギーバンドごとにフィッティングを行う。解析領域は $-25^{\circ} \le l \le 5^{\circ}$ 、 $-30^{\circ} \le b \le -10^{\circ}$ であり、この領域を 1 ビンあたり 0.25°× 0.25° ずつに分けて行った。

4.1.3 最尤法

一般的に観測値から放射モデルの変数をフィッティングによって決定するときは、光子 数の分布が正規分布になることを仮定しているので、最小二乗法を使うことができる。し かし、ガンマ線イベントのように到来光子数が少ない場合、ポアソン分布になるので最小 二乗法が使えない。このような場合、放射モデルの変数の決定には最尤法が使われる。最 尤法とは尤度関数を用いて最尤推定量 (Maximum Likelihood Estimator:MLE)を求める 方法である。

¹ isotropic_iem_v02.txt in http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

尤度関数 L はある測定値を $x_1, x_2, x_3, \dots, x_n$ 、モデルの変数を θ 、モデルの分布関数を $f(x|\theta)$ とすると

$$L(\theta|x_1, x_2, \cdots, x_n) = f(x_1|\theta)f(x_2|\theta)f(x_3|\theta)\cdots f(x_n|\theta) = \prod_{i=1}^n f(x_i|\theta)$$
(4.2)

で定義される。これは測定の結果が $x_1, x_2, x_3, \cdots, x_n$ となる確率を表している。尤度Lが最大となるのは、Lが極値をとるときであるから、

$$\frac{dL}{d\theta} = 0 \tag{4.3}$$

となる。この式 (4.3) から *L* が最大となる θ を求めるのが最尤法である。一般に尤度は値 が非常に小さくなるので、計算する際には、対数をとることで計算を簡単にする。すな わち、

$$\log L(\theta|x_1, x_2, \cdots, x_n) = \sum_{i=1}^n \log f(x_i|\theta)$$
(4.4)

が最大となるパラメータ θ を求める。本論文では、尤度と呼ぶときはこの $\log L$ を指すことにする。

また、最尤法では最小二乗法と違い、 χ^2 検定による有為度の評価ができない。そこで、 χ^2 検定の代わりに TS(Test Statistic)が用いられる。TS は

$$TS = 2(\log L - \log L_0) \tag{4.5}$$

で定義される。√TS・σが有為度を示す。この式の中で、Lは目的のモデルパラメータを 含めているときの尤度でL₀は目的のモデルパラメータを除いてフィッティングを行った ときの尤度である。こうしてモデルの必要性を判定することができる。

4.2 解析結果

4.2.1 使用するモデルの決定

始めに、伝統的な解析で行われてきたように $H_I(21 \text{ cm} \, \&)$ と CO(2.6 mm &) のみで 星間ガスの放射を表せているか否かを見るために、 $E(B - V)_{res}$ マップの必要性を Test Statistic を計算して調べる。次に、どこまで暗いガンマ線点源までフィッティングモデル に入れるべきかを決める。

$E(B-V)_{res}$ マップの必要性の評価

ここでは、R CrA 分子雲領域に存在するガンマ線点源の中で、1年カタログから有為度が 10σ 以上 (TS≥ 100) のものを用いて解析した。フィッティングするにあたり、領域内の

点源のスペクトルは free パラメータに、その外側の 5° 以内の点源はカタログに記載されている値に固定して解析を行う。その状態で $E(B-V)_{res}$ マップをモデルに入れないときと入れたときの結果を比較した。表 4.4 にそれぞれの尤度の違いをまとめた。その結果、 $E(B-V)_{res}$ マップを入れることで、自由度 11 に対し、尤度 log L は 91.7 大きくなった。

	$\log L$
$E(B-V)_{\rm res}$ なし	236896.0
$E(B-V)_{\rm res}$ あり	236987.7

表 4.4: *E*(*B* – *V*)_{res} マップの有無による尤度の違い

また、図 4.4 にそれぞれのフィットの残差マップを示す。どちらのマップにも、有為度の小さい点源に対応する残差が見られる。さらに $E(b-V)_{res}$ マップを入れない場合、 $3^{\circ} < l < 5^{\circ}$ 、 $-24^{\circ} < b < -28^{\circ}$ の領域に、明らかな広がった残差が残っていることがわかる。

さらに、モデル中のその他の成分にどのように影響するかを見るため、図 4.5 に $q_{\rm HI}$ と $q_{\rm CO}$ の変化を示した。左図から、 $E(B-V)_{\rm res}$ をいれることで、水素原子 1 個あたりのガ ンマ線放射率 $q_{\rm HI}$ は、統計誤差の範囲を越えて変化することがわかった。

以上から、R CrA 分子雲領域には H_{I} や CO でトレースできない星間ガスが存在し、それ は $E(B-V)_{res}$ マップで記述できることがわかった。さらに $E(B-V)_{res}$ マップを入れない と、 q_{HI} が統計誤差の範囲を越えて変わることがわかったので、以降の解析は $E(B-V)_{res}$ マップを用いて行う。

ガンマ線点源の有為度の下限の決定

次に、*E*(*B* – *V*)_{res} ガスマップをモデルに含めた状態で、フィッティングに用いるガン マ線点源の有為度の下限をTS=50 に下げた。ただし、1年カタログに記載されている点 源の中には、R CrA 分子雲の分子雲コア (密度の高い所)に位置するガンマ線点源、1FGL J1903.8-3718 が存在する。1FGL J1903.8-3718 は分子雲コアの可能性が高く、ガンマ線点 源ではないと思われるので以降の解析では考慮しない。TS を下げた結果、自由度は 88 に 対し、尤度 log *L* は 118.1 大きくなった (表 4.5)。

	$\log L$
PS; TS ≥ 100	236987.7
PS; TS ≥ 50	237105.8

表 4.5: ガンマ線点源の有為度の下限の違いによる尤度の違い

図 4.4: *E*(*B* – *V*)_{res}マップの有無による残差マップの変化

図 4.5: $E(B-V)_{res}$ マップの有無による q_{HI} および q_{CO} の変化。赤が $E(B-V)_{res}$ を入れたとき、緑が入れないときの結果

また、ガンマ線源の有為度の下限を TS=50 に下げたとき $q_{\rm HI}$ と $q_{\rm CO}$ に及ぼす影響を見たが、いずれも統計誤差より小さかった (図 4.6)。

図 4.6: ガンマ線点源の有為度の下限の違いによる q_{HI} および q_{CO} の変化。

っまり、これ以上暗い点源を考慮しても、本研究の目的である、星間ガスからのガンマ 線放射に影響を与えないと考えられる。ただし、残差マップを見るに、1年カタログの後 に明るくなったガンマ線源が(l,b) = (-17.8, -12.0), (-15.6, -15.1), (-9.9, -15.2)に存 在すると考えられる。実際、2年カタログでは、TSが100以上の明るいガンマ線源とし てそれぞれ1FGL J1754.0-5002、24M2237、24M2282という名称で記載されている。従っ て、これらを考慮して解析を行うことにした。結果を図 4.7にまとめる。

図 4.7:1年カタログの後に明るくなった3つの点源の有無による q_{HI} および q_{CO} の変化。 赤が点源を入れたとき、緑が入れないときの結果

この結果、TSを50まで下げ、さらに明るいガンマ線源を入れても、影響は統計誤差より小さいことが分かった。よって以下の議論では、これらのガンマ線源まで含めることとし、より暗い点源の影響は無視できるものとして議論する。

4.2.2 Fit 結果の検証

こうして得られたデータカウントマップ、モデルカウントマップ、両者の残差マップを 図 4.8 に示す。残差マップはデータカウントからモデルカウントを引いたものを標準偏差 (モデルカウントの平方根)で割ったものある。これを見ると、作成されたモデルカウント マップはデータをよく再現できているように見える。より詳しく再現性を調べるために図 4.9 に残差の分布をガウス関数でフィッティングしたものを示す。これを見ると、データ は0が中心のガウス関数でおおむね記述できることがわかる。

最後に、それぞれのガスマップの分布を見るために、モデルマップを各ガス成分ごとに 分解した。その結果を図 4.10 に示す。左上に原子ガスからのガンマ線放射、右上が W_{CO} からトレースされた分子ガス成分からのガンマ線放射、左下が $E(B-V)_{res}$ ガスマップか ら予測されるガス成分からのガンマ線放射を表す。これを見ると、水素原子ガスは解析 領域内になだらかに広がっており、これをもとに周囲の宇宙線の分布を調べることができ る。CO でトレースされる分子ガスは銀経が $-3^\circ < l < 4^\circ$ 、銀緯が $-22^\circ < b < -14^\circ$ に集 中した構造になっている。 $E(B-V)_{res}$ でトレースされるガスは両者の境界に分布してい ることがわかる。

4.2.3 星間ガスからのガンマ線放射と系統誤差

ガンマ線放射率

こうして得られた R CrA 分子雲領域にある星間ガスからのガンマ線放射を各ガス成分 からのガンマ線放射率の形で表 4.6 にまとめた。200 MeV 以上でガンマ線放射率は水素原 子 1 個あたり (10.1±1.1)×10⁻²⁷ photons s⁻¹ sr⁻¹ だった。

図4.11に各ガス成分からのスペクトルを示す。4.3節ではこれらの結果と他の領域の結果を用いて、太陽系近傍の宇宙線と物質分布を議論する。その準備として得られたスペクトルの系統誤差を評価する。系統誤差の原因として、一様なバックグラウンドの不定性によるものと、H_Iの21 cm線の自己吸収、つまり光学的厚みの不定性によるものの2つを考えた。

一様なバックグラウンドの不定性による系統誤差

ー様なバックグラウンドモデルの不定性による系統誤差を評価する。まず、一様成分 をfree パラメータにしてフィットした場合、モデルの normalization はエネルギーごとに 多少ばらつくものの、おおよそ1.1となった。また、これまでの本研究と同様の広がった ガンマ線の解析においても、一様な成分には±10%程度ばらついた結果が報告されている

図 4.8: R CrA 分子雲領域のデータカウントマップ (左上) とモデルカウントマップ (右上) と両者の残差マップ (左下)

図 4.9: 残差マップの分布をガウス関数でフィッティングした図 (右)

[19][28]。よって一様なバックグラウンドモデルには 10%の誤差があるとみなし、モデル (式 4.1 の *I*_{iso})を±10%振ってその影響を評価する。結果を図 4.12 にまとめた。

この結果を見ると、原子ガスからのガンマ線放射率は統計誤差と同程度か、それより大き い変化が見られた。この影響は系統誤差として、今後の議論で考慮する。

光学的厚みによる系統誤差

次に、水素原子の21 cm 線の自己吸収、つまり光学的厚みの不定性による系統誤差を評価する。4.1.2 節で述べたように光学的厚みはスピン温度というパラメータで記述される。これまでの解析では、 $T_{\rm S}$ =125 Kを仮定していた。ここでは、 $T_{\rm S}$ =100 Kの場合と光学的に十分薄い場合を仮定して同様な解析を行い、影響を調べた。その結果を図 4.13 にまとめた。

これを見ると、原子ガスのガンマ線放射率に変化が見られた。しかし、その大きさは一様 なバックグラウンドモデルの不定性によるものより小さいことがわかった。従って、*T_s*の 不定性の影響は以下では無視できるものとする。

4.3 議論

4.3.1 太陽系近傍の宇宙線スペクトル

図 4.14 に R CrA 分子雲領域における原子ガスからのガンマ線放射率 (青) を示す。比較 のため、他の領域の結果およびモデルスペクトルも示した。赤、緑はそれぞれ Fermi 衛

図 4.10: 各ガス成分ごとのデータモデルマップ。左上が H_I ガス、右上が CO ガス、左下 が *E*(*B* – *V*)_{res} ガス。

Energy	$q_{ m HI}$	$q_{ m CO}$	$q_{ m EBV}$	
(GeV)	$(10^{-27} \text{ s}^{-1} \text{ sr}^{-1})$	$(10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} (\text{K km/s})^{-1})$	$(10^{-5} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ mag}^{-1})$	
0.20-0.28	2.942 ± 0.327	8.044 ± 1.472	$3.408 {\pm} 0.804$	
0.28-0.40	2.268 ± 0.228	5.110 ± 0.902	$3.333 {\pm} 0.568$	
0.40-0.57	$1.538 {\pm} 0.159$	$4.464 {\pm} 0.616$	$2.181{\pm}0.398$	
0.57-0.80	$1.258 {\pm} 0.117$	4.224 ± 0.454	$1.337 {\pm} 0.288$	
0.80-1.13	$0.852 {\pm} 0.088$	$3.600 {\pm} 0.248$	$0.880 {\pm} 0.216$	
1.13-1.60	$0.457 {\pm} 0.014$	1.712 ± 0.172	$0.768 {\pm} 0.102$	
1.60-2.26	$0.389 {\pm} 0.048$	$0.986 {\pm} 0.174$	$0.399 {\pm} 0.122$	
2.26-3.20	$0.200 {\pm} 0.038$	$0.724 {\pm} 0.140$	$0.242{\pm}0.093$	
3.20-4.53	$0.105 {\pm} 0.031$	$0.258 {\pm} 0.094$	$0.286{\pm}0.077$	
4.53-6.40	$0.073 {\pm} 0.025$	$0.172 {\pm} 0.072$	$0.109 {\pm} 0.055$	
6.40-9.05	$0.027 {\pm} 0.018$	$0.098 {\pm} 0.056$	$0.046 {\pm} 0.028$	

表 4.6: R CrA 分子雲領域からの各ガス成分からのガンマ線放射率

星で観測された太陽系近傍の領域、カメレオン座分子雲領域と 2nd Quadrant 内の Gould Belt のスペクトル、黒線が地球で直接観測された宇宙線 (Local Interstellar Spectram; LIS) から計算された星間ガスからのガンマ線放射モデルである [28][29]。2nd Quadrant 中の Gould Belt は 100° $\leq l \leq 145^\circ$ 、 $-15^\circ \leq b \leq 30^\circ$ での解析結果である。また、R CrA 分子 雲領域とカメレオン座分子雲領域に描かれている系統誤差はともに、一様成分のバックグ ラウンドモデルの不定性を評価したものである。

星間ガスと宇宙線の衝突によって放射されるガンマ線の放射率は星間物質の状態に依 存しないので、この図は周辺の宇宙線のスペクトルを反映している。スペクトルの形は

図 4.11: 星間ガスからのガンマ線放射のスペクトル。左上が原子ガス、右上が CO からト レースされるガス、左下が *E*(*B* – *V*)_{res} からトレースされるガス。

おおむね似かよっており、これら太陽系近傍の領域では宇宙線スペクトルの形状はよく似 ていると結論できる。また、R CrA 分子雲領域のガンマ線スペクトルは LIS に対するモ デルと形も強度も近いものが得られ、R CrA 分子雲領域の宇宙線は、地球上空で観測さ れたものと近いことがわかった。一方、カメレオン座分子雲領域は強度が 2/3 程度しかな く、逆に Gould Belt 領域は若干大きい。2 章で述べたように、宇宙線の主な起源は超新 星残骸であり、それが銀河中の乱れた磁場によって散乱され、拡散で広がっていくとされ る。よって宇宙線源の分布が一様でなく、宇宙線の強度分布にむらが生じている可能性が ある。今後、他の領域も解析することで、太陽系近傍の宇宙線分布を明らかにできること が期待される。

4.3.2 星間ガスの分布

X_{CO}の導出

3章で述べたように、宇宙線と星間ガスとの衝突によるガンマ線の放射率は、星間ガス の温度や状態に依存しないので、ガンマ線観測によって物質の分布を探ることができる。

図 4.12: 一様なバックグラウンドモデルの不定性による系統誤差の評価。左が原子ガスから、右が分子ガスからのガンマ線放射率。緑の帯が一様バックグラウンドモデルの normalization を ±10%変化させたときの系統誤差を示す。

図 4.13: 光学的厚みの不定性による系統誤差の評価。左が原子ガスから、右が分子ガスからのガンマ線放射率。赤のデータ点がスピン温度 T_S=125 K のときで、緑の帯が T_S=100 K および十分に光学的に薄い場合に変化させたときの系統誤差を示す。

図 4.14: R CrA 分子雲領域における原子ガス成分のガンマ線放射率 (青) とカメレオン座 分子雲における原子ガス成分のガンマ線放射率 (赤) と LIS のモデル (黒) と Gould Belt の ガンマ線放射率の比較 (緑)。

ガンマ線は原子ガス・分子ガスの両方から放出され、各ガスのマップ (4.2.2 節) を比べる ことで、電波で直接観測できない分子ガスの分布を求めることができる。水素分子の柱密 度 N(H₂) が分かれば、CO 分子の電波強度との比で定義される変換係数 X_{CO} も求めるこ とができる。

$$X_{\rm CO} = N({\rm H}_2)/W_{\rm CO} \tag{4.6}$$

実際には、この X_{CO} がまずフィットパラメータから求められるので、これを用いて分子ガスの質量を求めることになる。水素分子1個あたりのガンマ線放射率は、水素原子1 個あたりのガンマ線放射率の2倍なので、ガンマ線の強度 $I_{\gamma}(l,b)(s^{-1} \text{ cm}^{-2} \text{ sr}^{-1} \text{ MeV}^{-1})$ は以下のように書くことができる。

$$I_{\gamma} = q_{\mathrm{HI}} \cdot N(\mathrm{H}_{\mathrm{I}}) + 2q_{\mathrm{HI}} \cdot N(\mathrm{H}_{2}) + \cdots$$

$$(4.7)$$

 $N(H_I)$ 、 $N(H_2)$ はそれぞれ水素原子と水素分子の柱密度 (cm⁻²) である。これに式 (4.6) を代入すると、

$$I_{\gamma} = q_{\rm HI} \cdot N({\rm H}_{\rm I}) + 2q_{\rm HI}X_{\rm CO} \cdot W({\rm CO}) + \cdots$$
(4.8)

これと式(4.1)と比較することで以下の関係が得られる。

$$q_{\rm CO} = 2q_{\rm HI} \cdot X_{\rm CO} \tag{4.9}$$

図 4.15 に q_{HI} と q_{CO} の関係を示す。このグラフの傾きの 1/2 が X_{CO} になる。得られた 結果を表 4.7 に示す。その他の領域との比較もあわせてまとめた。

図 4.15: R CrA 分子雲領域の H_I と CO のガンマ線放射率の関係。データ点は、表 4.6 の 値に対応し、低エネルギー側ほど右上に位置する。

	$X_{CO}(\times 10^{20} \text{ cm}^{-2} (\text{K km/s})^{-1})$			
R CrA 分子雲領域	$1.66 \pm 0.09_{\rm stat} \pm 0.19_{\rm sys}$			
カメレオン分子雲領域	$1.09 \pm 0.06_{\rm stat} \pm 0.07_{\rm sys}$			
Gould belt	$0.87 \pm 0.05 \ [29]$			

表 4.7: 各領域ごとの X_{CO} の比較

R CrA 分子雲領域の結果は IRAS 衛星による波長 100 μ m の赤外線観測に基づいた結果 (X_{CO} = 1.8×10^{20} cm⁻² (K km/s)⁻¹[22]) と誤差の範囲で一致した。一方、カメレオン座 分子雲領域や Gould Belt 領域での値は 2/3 程度となっている。従って、全水素分子に対 する CO の比は、太陽系の近傍でも最大で 2 倍程異なっていることが示唆される。

分子雲の質量の導出

上で求めた X_{CO} を用いて、分子雲の質量を求めることができる。以下にその導出方法 を示す。まずピクセルごとに、柱密度を求める。柱密度は、

$$column \ density = X_{CO} \times W_{CO} \tag{4.10}$$

となる。これにピクセルの面積*dS*をかけることで、ピクセルごとの分子数がわかる。ピ クセルの面積は以下のように表される。

$$dS = d^2 \cos b \ db \ dl \tag{4.11}$$

ここで、dは分子雲までの距離、(b,l)は銀緯・銀経、 $db \ge dl$ はピクセルのビンの大きさである。R CrA 分子雲の場合は、[25]に従い、d = 150 pc を採用する。これに水素分子の質量をかけることで、分子雲内の成分が全て水素分子だった場合の質量が求められる。 さらに、分子雲内の水素原子に対する平均原子量 μ をかけることで各ピクセルあたりの質量 dM が求められる。

$$dM = 2\mu m_{\rm H} d^2 X_{\rm CO} W_{\rm CO} \cos b \ db \ dl \tag{4.12}$$

ここで、 $m_{\rm H}$ は水素原子の質量で、 $m_{\rm H} = 1.67 \times 10^{-27}$ kg であり、 μ は、星間空間における水素原子に対する平均原子量で、 $\mu = 1.36$ とする [29]。これを全ピクセルで積分することで求められる R CrA 分子雲の質量は、 $M \sim 1500 \ M_{\odot}$ となった。この値は Dame らによって求められた値 (3000 M_{\odot})の 1/2 程度である。Dame らは当時の標準的な $X_{\rm CO}$ (全天平均)の値を用いての結果であり、ガンマ線観測を用いた本研究の方がより正しい値であると考えられる。[25]

H_IやCOでトレースできない星間ガスの質量の導出

 H_{I} や CO でトレースできない星間ガスの質量も分子雲の質量と同様の方法で求めることができる。まず水素原子1個あたりのガンマ線放射率と $E(B-V)_{res}$ でトレースされるガスからのガンマ線放射率の比 X_{EBV} を求める。 X_{EBV} は以下の式でフィットパラメータから求めることができる。

$$q_{\rm EBV} = q_{\rm HI} \cdot X_{\rm EBV} \tag{4.13}$$

図 4.16 に *q*_{HI} と *q*_{EBV} の関係を示す。

このグラフの傾きで表される、X_{EBV}は、以下のようになった。

$$X_{\rm EBV} = (1.33 \pm 0.12) \times 10^{22} \, [\rm cm^{-2} \, mag^{-1}]$$
(4.14)

図 4.16: R CrA 分子雲領域の H_I と、 H_I やCOでトレースできないガスからの放射率の関係。データ点は、表 4.6 の値に対応する。

この値を用いて、分子雲領域 ($-4^\circ < l < 5^\circ$ 、 $-29^\circ < b < -16^\circ$)の質量を CO の場 合と同様に求めると、 $M \sim 2500 M_{\odot}$ となった。つまり、CO でトレースされるガスの 1.5 倍程度の質量が存在するという結果が得られた。注意点として図 4.11 で分かるように $E(B-V)_{res}$ でトレースされるガスからのガンマ線放射率は、若干高エネルギー側で高く なっており、この原因と、これによる質量の見積りへの影響 (系統誤差) は今後の検討課 題である。CO でトレースされるガスと同程度のガスが存在するという結論自体は変わら ないと考えられる。

第5章 まとめと今後

本研究では、Fermi衛星の優れた能力によって、太陽系近傍の $\leq 10^4 M_{\odot}$ 程度の比較的 小さい分子雲領域 (R CrA 分子雲) からのガンマ線を検出し、それを宇宙線と星間ガスと の核子-核子反応や、星間光子との逆コンプトン散乱などの反応を主とするモデルでガン マ線データを表すことに成功した。得られた結果を以下に示す。

- R CrA分子雲領域からのガンマ線を原子ガスからの放射と分子ガスからの放射に分けて、それぞれの成分からのガンマ線放射率を求めることができた。これにより幅広い分子雲サンプルで、宇宙線と星間ガスの分布を議論できるようになった。
- 他の領域および地球で観測された宇宙線スペクトルに基づくモデルと比較した。その結果、R CrA 分子雲領域の宇宙線強度は、地球で観測された宇宙線と誤差の範囲で一致することがわかった。また領域によっては宇宙線強度が30%程度異なっており、多くの領域を調べることで太陽系近傍の宇宙線の分布を調べることができると考えられる。
- 水素分子の柱密度と CO の電波強度との比で表される比 X_{CO} を導出した。得られた 値は、

 $X_{\rm CO} \sim (1.66 \pm 0.09_{\rm stat} \pm 0.19_{\rm sys}) \times 10^{20} \, [\rm cm^{-2} \, (K \, \rm km/s)^{-1}]$

となった。この値から分子雲の質量を

$$M \sim 1500 \ M_{\odot}$$

と求めた。

● R CrA分子雲領域にはH_IやCOでトレースできないガスが存在しており、質量は、

$$M \sim 2500 \ M_{\odot}$$

と求まった。COでトレースできるガスと同程度の質量のガスが存在することがわかった。 今後、さらに多くの領域と比較することで、太陽系近傍の宇宙線スペクトル分布や物質 分布を調べることが課題となる。また、本研究領域のガンマ線統計を増やすことで、ガン マ線スペクトルを精度良く求めたり、領域内のガンマ線源の議論も可能となる。

付 録 A R CrA分子雲領域に存在する ガンマ線源のスペクトル

ガンマ線点源の解析では、バックグラウンド事象の正確な見積りが重要になる。本研究 で、R CrA 分子雲領域の広がったガンマ線放射を調べることができたので、その結果を 利用して、領域内に存在するガンマ線源の正確なスペクトルを得ることが可能になった。 本章では R CrA 分子雲領域に存在するガンマ線源のスペクトルをまとめる。ここに示す ガンマ線源は、Fermiの1年カタログに掲載されているガンマ線源のうち、TS が 50 以上 のものを扱っている。それに加えて、4.2.1 節で述べたように、残差マップから1年カタ ログののちに急に明るくなったとわかる、3つのガンマ線源のスペクトルも示す。

表A.1に1年カタログに記載されている R CrA 分子雲領域内に存在する9 つの点源と 2年カタログで新しく明るい点源として記載されている3 つの点源のパラメータを示した [35][36]。上の9つが1年カタログに記載されているもの、下の3つが2年カタログに新し く記載されたものである。TS はそれぞれのカタログに記載されていたものを示している。 ガンマ線天体の位置や変動から、Fermi チームが割り出した天体の種類もあわせて示す。 種類が空欄のものは、まだ分類がはっきりしていないものである。

図 A.1-A.12 に、それぞれのガンマ線点源の光子数スペクトルにエネルギーの2 乗をかけたもの (s⁻¹ cm⁻² MeV)、すなわち $\nu F \nu$ スペクトルを示した。また、各ガンマ線源の光子数のスペクトルのべき p を求めるために、 $\nu F \nu$ スペクトルを以下の式でフィッティングした。

$$\nu F \nu = A E^{-(p-2)} \tag{A.1}$$

表 A.1 には導出した光子スペクトルのべきとカタログに記載されたべきの値を比較した。

図 A.13-A.15には、1年カタログの後に明るくなったと考えられる3つの点源について、 1年カタログの前後でのスペクトルの変化をまとめた。全て赤が1年カタログ以前(1-11ヶ 月)、緑が1年カタログ以後(11-17ヶ月)である。全てのガンマ線源で、ガンマ線フラック スが大きくなったことが分かる。これらは全てブレーザーとして分類されており、その増 光を検出したと考えられる。

表 A.1: R CrA 分子雲領域内に存在するガンマ線源。上の9つが1年カタログで TS が50 以上のもの、下の3つが2年カタログで明るくなったものを示している。[35][36]

名前	l	b	TS	導出したべき	カタログのべき	種類
1FGL J1832.6-5700	-21.777	-20.043	67.7	$1.84{\pm}0.28$	2.28 ± 0.16	Blazar
1FGL J1842.3-5845	-23.128	-21.811	59.5	$1.52 {\pm} 0.55$	$1.70 {\pm} 0.25$	
1FGL J1849.6-4314	-7.115	-17.891	68.5	$2.31{\pm}0.11$	$2.18 {\pm} 0.13$	Blazar
1FGL J1902.0-5110	-14.421	-22.404	220.4	$2.09 {\pm} 0.09$	$2.11 {\pm} 0.08$	
1FGL J1918.4-4108	-3.155	-22.267	160.6	$1.98 {\pm} 0.13$	$1.85 {\pm} 0.09$	Blazar
1FGL J1936.9-4720	-8.851	-27.015	80.0	$2.02 {\pm} 0.41$	$1.68 {\pm} 0.19$	Blazar
1FGL J1938.2-3957	-0.775	-25.549	145.1	$2.67 {\pm} 0.11$	$2.45 {\pm} 0.09$	Blazar
1FGL J1946.7-5404	-16.127	-29.611	76.9	$2.25 {\pm} 0.19$	$2.32 {\pm} 0.12$	
1FGL J1958.4-3847	1.552	-29.053	273.4	$2.62 {\pm} 0.09$	$2.47 {\pm} 0.08$	Blazar
1FGL J1754.0-5002	-17.836	-12.036	118.6	$2.76 {\pm} 0.14$	2.71	Blazar
24M2237	-15.607	-15.135	106.7	$2.51 {\pm} 0.17$	2.46	Blazar
24M2282	-9.876	-15.225	199.2	$2.46{\pm}0.13$	2.42	Blazar

図 A.1: 1FGL J1832.6-5700

⊠ A.3: 1FGL J1849.6-4314

10⁴

⊠ A.5: 1FGL J1918.4-4108

図 A.6: 1FGL J1936.9-4720

図 A.7: 1FGL J1938.2-3957

X A.8: 1FGL J1946.7-5404

🗵 A.9: 1FGL J1958.4-3847

⊠ A.10: 1FGL J1754.0-5002

⊠ A.11: 24M2237

⊠ A.12: 24M2282

図 A.13: 1FGL J1754.0-5002 のスペクトル 変化

図 A.14: 24M2237 のスペクトル変化

図 A.15: 24M2282 のスペクトル変化

参考文献

- W.B. Atwood et al. 2009, The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission, ApJ 697, 1071
- [2] R. Rando et al. 2009, Post-Launch performance of the Fermi Large Area Telescope, arXiv 0907
- [3] Fermi LAT Performance http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.htm
- [4] NASA Fermi HomePage http://fermi.gsfc.nasa.gov/ssc/observations/types/allsky/index.html
- [5] NASA CGRO HomePage http://heasarc.gsfc.nasa.gov/docs/cgro/images/egret/
- [6] 增田 博之 2001 「Performance Verification of Large Area Silicon Strip Sensors for GLAST」 広島大学 修士論文
- [7] 佐藤 慶二 2002 「シリコンストリップ検出器の信号特性の評価」広島大学 卒業論文
- [8] 河本 卓也 2005 「次世代ガンマ線衛星 GLAST トラッカー部地上較正試験と性能モニタ」 広島大学 修士論文
- [9] A.A. Abdo et al. 2010, Fermi Large Area Telescope First Source Catalog, ApJS 188, 405
- [10] K.M. Ferriere. 2001, The Interstellar Environment of our Galaxy, Rev. Mod. Phys. 73, 1031
- [11] 小田稔 「宇宙線」 裳華房 1972
- [12] S.P. Swordy 2001, The Energy Spectra and Anisotropies of Cosmic Rays, Space Sci Rev. 99, 85
- [13] E.S. Seo et al. 1991, Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum, ApJ 378, 763

- [14] A.A. Abdo et al. 2010, Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT, Sci 327, 1103
- [15] A.A. Abdo et al. 2009, Fermi LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C, ApJ 706, 1103
- [16] 木舟正 「宇宙高エネルギー粒子の物理学」 培風館 2004
- [17] S.K. Gaisser. 1990, Cosmic Rays and Particle Physics,
- [18] M. S. Longair. 1981, High Energy Astropysics
- [19] A.A. Abdo et al. 2009, Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes, PhRvL 103, 1101
- [20] D.P. Clemens et al. 1985, Massachusetts-Stony Brook Galactic plane CO survey -The Galactic disk rotation curve, ApJ 295, 422
- [21] 暗黒星雲 http://ja.wikipedia.org/wiki/%E6%9A%97%E9%BB%92%E6%98%9F%E9%9B%B2
- [22] T.M. Dame et al. 2001, The Milky Way in Molecular Clouds: A New Complete CO Survey, ApJ 547, 792
- [23] A.W. Digel et al. 1999, EGRET Observation of the Diffuse gamma-ray Emission in Orion: Analysis Through Cycle 6, ApJ 520, 196
- [24] S.W. Digel et al. 1997, Molecular clouds observed with the EGRET gamma-ray telescope, IAUS 170, 404
- [25] T.M. Dame et al. 1987, A Composite CO Survey of the Entire Milky Way, ApJ 322, 706
- [26] LAT User Workbook http://glast-ground.slac.stanford.edu/workbook/
- [27] 佐田 貴幸 2008 「宇宙 γ 線観測衛星フェルミの大気 γ 線由来のバックグラウンドの 評価」 広島大学 卒業論文
- [28] A.A. Abdo. 2009, Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-energy Cosmic Ray, ApJ 703, 1249
- [29] A.A. Abdo. 2010, Fermi Observations of Cassiopeia and Cepheus: Diffuse Gammaray Emission in the Outer Galaxy, ApJ 710, 133

- [30] P.M.W. Kalberla. 2005, The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI: Final data release of the combined LDS and IAR surveys with improved strayradiation corrections, A&A 440, 775
- [31] I.A. Grenier. 2005, Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood, Sci 307, 1292
- [32] T.A. Porter. 2008, Inverse Compton Origin of the Hard X-Ray and Soft Gamma-Ray Emission from the Galactic Ridge, ApJ 682, 400
- [33] A.A. Abdo. 2009, Measurement of the Cosmic Ray $e^+ + e^-$ Spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope, Phys, Rev, Lett., 102, 181101
- [34] バックグラウンドモデル http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
- [35] Final 1FGL source list (Confluence) https://confluence.slac.stanford.edu/display/SCIGRPS/Final+1FGL+source+list
- [36] Fermi 2-yesr source list (Confluence) https://confluence.slac.stanford.edu/display/SCIGRPS/ 2-year+v2+release+to+collaboration