ガウス過程回帰による活動銀河核ジェットの時間変動の研究

広島大学大学院理学研究科物理科学専攻

高エネルギー宇宙・可視赤外線天文学研究室

M162429

安部 太晴

主查: 植村 誠 副查: 山本 一博

2018年2月

銀河中心から強い放射を行う活動銀河核のうち、中心核付近から細長く延びるジェットが観測者の方向を向 いている天体をプレーザーと呼ぶ。ブレーザー天体は、可視光領域における輝線から、光度が高いクェー サー型と低い BL Lac 型の2種類に大別される。プレーザーはジェットからの放射が卓越しており、その放 射は激しく時間変動することが知られているが、変動の詳しい原因はまだわかっていない。ブレーザーの時 間変動は不規則なものであるため、データから変動の特徴を抽出することは一般的に難しい。本研究はブ レーザーのジェットに起因する時間変動の原因を調べることを目的に、クェーサー型と BL Lac 型の光度変 動の特徴の差異をガウス過程と機械判別を用いて定量的に調査した。

ガウス過程はデータに対して特定の関数の仮定を行わない回帰モデルである。そのため、ブレーザー天体の光度変動のような、関数形が不明なデータを取り扱うのに適している。広島大学かなた望遠鏡で得られた62個のサンプルに対してガウス過程回帰で得られる6種類のパラメータを用いて、プレーザーの光度変動の特徴を調べた。

ガウス過程を用いて取得したパラメータがクェーサー型と BL Lac 型の特徴を表しているか調べるため に、判別モデルによる分類問題を扱った。本研究で使用した判別モデルは2つある。1つは、パラメータベ クトルを直接1次元量に線形変換する線形判別である。もう1つは、カーネル関数を用いて非線形判別を 可能にするスパースロジスティック回帰である。分類に使用するガウス過程のパラメータは、クェーサー型 と BL Lac 型の分類に有用なパラメータを調べるため、分類に使用するガウス過程のパラメータの全組み合 わせを試し、クェーサー型と BL Lac 型の分類に有用なパラメータを調べた。

その結果、ガウス過程から得られる、光度曲線の振幅を表すパラメータで、BL Lac 型とクェーサー型に 有意な差が見られた。これは、BL Lac 型ではジェット内に複数の放射源が存在しているため、1つ1つの 変動成分の寄与が相対的に小さくなることを示唆している。

概要

目 次

第1章	研究の背景	3
1.1	ブレーザー天体	3
1.2	ブレーザーの時間変動....................................	4
1.3	本研究の目的....................................	9
第2章	解析手法およびその理論	10
2.1	2 クラス判別問題の概要	10
2.2	フィッシャーの線形判別....................................	10
2.3	カーネル法	13
2.4	スパースロジスティック回帰	13
2.5	判別モデルの性能評価....................................	14
	2.5.1 交差検証	15
	2.5.2 ROC 曲線 (Receiver Operatorating Characteristic curve) と AUC (Area Under the Curve)	15
2.6	ガウス過程	17
第3章	使用するデータについて	19
3.1	観測装置について....................................	19
3.2	解析に用いたデータ....................................	19
第4章	結果	23
4.1	光度曲線データに対するガウス過程の結果	23
4.2	線形判別による結果	25
4.3	非線形判別による結果	28
第5章	考察	31
5.1	結果の有意性について....................................	31
5.2	高い AUC の結果が得られたパラメータの組み合わせによる線形判別	31
5.3	FSRQ 型天体の A _{exp} が大きい理由	35
5.4	FSRQ 型天体 と判定される BL Lac 型天体について	35
5.5	パラメータ I _{RBF} について	36
5.6	特異な天体について....................................	37
	5.6.1 PKS 1749+096	37
	5.6.2 S5 0716+714	37
5.7	線形判別の方が非線形判別よりも高い性能が得られた理由..............	38

第6章	まとめ	39
付録A	RBF カーネルによるガウス過程回帰の計算結果	40
付録B	指数カーネルによるガウス過程回帰の計算結果	49

第1章 研究の背景

1.1 ブレーザー天体

宇宙に存在する銀河のうち、その中心部分の狭い領域から強いエネルギー放射を行うものが存在する。その強い放射を行う中心部分を、活動銀河核と呼ぶ。活動銀河核はその中心に質量 10⁶⁻⁹ M_☉ の巨大ブラックホールをもち、周辺のガスがブラックホールへ降着する際に重力エネルギーを解放し明るく輝く。活動銀河 核からの放射は電波からガンマ線領域に至るまで、幅広い帯域にわたって観測される。

このジェットが観測者方向へ向いているものをブレーザーと呼ぶ。ジェットは光速に近い速さで放出され、 これを正面から観測することで、相対論的ビーミング効果により光度が強まる[1]。図 1.1 は、ブレーザー の典型的なエネルギースペクトル分布である。電波から X 線まで卓越している成分はジェットからのシン クロトロン放射である。本論文では主に可視光観測の結果を述べるが、可視光ではシンクロトロン放射が 卓越している。また、X 線からガンマ線まで卓越している成分はジェット内の電子による逆コンプトン散乱 だと考えられているが、その種光子についてはまだよくわかっていない。

図 1.1: 典型的なブレーザー (Mrk 421) のエネルギースペクトル分布 [13]。

ブレーザーは、Flat-Spectrum Radio Quasars (FSRQ) と BL Lac に大別される。FSRQ では可視光スペクト ルに降着円盤起源の強い輝線が観測され、そのためクェーサーの一種とされる。一方で、BL Lac では強い 輝線が観測されず、シンクロトロン放射の連続光のみが見える。輝線強度は一般的に等価幅 5Åが閾値とさ れる [2]。観測される輝線の強度は一般的にはジェットに対する降着円盤の光度比で決まり、FSRQ の方が 降着円盤が明るい、すなわち中心ブラックホールへの質量降着率が高いと考えられている。それぞれの、よ く知られている観測的特徴の1つに、シンクロトロン放射のピーク周波数 ν_{peak}の差異がある。図 1.2 は BL Lac (青) と FSRQ (赤) のシンクロトロン放射のピーク周波数が異なることを示している。図からわかるよう に、一般に、FSRQ の方が ν_{peak} が低周波数側に偏る傾向がある。また、それぞれの赤方偏移も異なる。図 1.3 のように、BL Lac は赤方偏移は小さく、FSRQ は大きい。すなわち、BL Lac と FSRQ で、それぞれ近 傍か遠方か、分布が異なっている。

また、BL Lac 天体は、 v_{peak} から、Low-synchrotron peaked (LSP) BLLac ($v_{peak} < 10^{14}$ Hz)、Intermediatesynchrotron peaked (ISP) BL Lac (10^{14} Hz < $v_{peak} < 10^{15}$ Hz)、High-synchrotron peaked (HSP) BL Lac (10^{15} Hz < v_{peak})、に分けられる場合もある [3]。図 1.2 からわかるように、LSP BL Lac 天体は FSRQ と共通の v_{peak} を持っている。

他に BL Lac と FSRQ を特徴づけるものとして、電波領域の明るさの差異もある。図 1.4 のように、FSRQ (赤) は電波域では明るいものが多く、BL Lac (青) は電波域では暗いものが多いことが知られている。この ことから、BL Lac と比べて FSRQ の方がジェットの光度が大きく、ジェットが持つ総エネルギーも大きい と考えられる。

図 1.2: BL Lac (青) と FSRQ (赤) のシンクロトロン放射のピーク周波数 (横軸) のヒストグラム [14]。縦軸 は、その周波数における光源の数。

1.2 ブレーザーの時間変動

ブレーザーの特徴の一つに、激しい時間変動が挙げられる。図 1.5 と図 1.6 に典型的な BL Lac と FSRQ の可視光の光度曲線を示す。これらの図からわかるように、ブレーザーの光度曲線変動は不規則なもので、 周期性の高い変動は通常観測されない。

可視光はジェットからのシンクロトロン放射が卓越するため、その時間変動の原因として電子のエネル ギー分布の変化が考えられる。電子のエネルギー分布を変化させる要因として最も広く受け入れられてい るシナリオは、ジェット内の衝撃波による電子の加速である。このシナリオでは、ジェット内を移動するプ ラズマのシェル同士が衝突することで衝撃波が発生し、フェルミの1次加速によって電子が加速される。加

図 1.3: FSRQ と BL Lac の赤方偏移分布 [14]。

図 1.4: 電波領域での FSRQ (赤) と BL Lac (青) の光度の分布を示したヒストグラム [12]。

速された電子はシンクロトロン放射による冷却などによってエネルギーを失う。このような過程によって、 シンクロトロン放射をする電子の数が増減し、時間変動が観測される。時間変動の起源として別の重要な 要因は、放射領域の視線方向の速度が変化し、ビーミング因子が変わることによる効果である。相対論的 ビーミング効果では、放射エネルギーはビーミング因子の4乗に比例するため、わずかなビーミング因子 の変化でも大きな変動の原因となる。

観測される光度曲線には加速される電子のエネルギー分布や、ビーミング因子の分布、また放射領域の大きさなど、ジェットの性質を知るうえで重要な情報が含まれているが、変動が不規則なため、その特徴を定義することは一般に困難である。

例えば、前節で述べたように、FSRQ と BL Lac は活動銀河核の降着エネルギーやジェットの総エネルギー に系統的な違いがあるため、ジェット起源の変動にも差異がある可能性がある。実際、図 1.5 と図 1.6 から もわかるように、BL Lac は常に高周波の振動を繰り返しているような光度曲線であるのに対し、FSRQ で は数十日-数百日に1回程度の頻度で突発的なフレアが観測されることが多い [4]。そのような特徴を定量 的に議論されたことはないが、FSRQ と BL Lac の時間変動の特徴に系統的な差がある場合、その特徴から ジェットの統一的な理解のための手がかりが得られるかもしれない。

図 1.5: かなた望遠鏡の観測から得られたブレーザー BL Lac の光度曲線。

従来、ブレーザーのような不規則な光度変動の特徴を議論する際にはパワースペクトルや構造関数を使う ことが多かった。例えば、ブレーザーのパワースペクトルや構造関数は時間周波数のべき関数 (*P*(*v*) ∝ *v*^{-*p*}) になることが知られているが、単一のべき関数ではなくパワースペクトルに「折れ曲り」が現れる。その 折れ曲りの周波数が最短の時間変動タイムスケールに相当する。最短タイムスケールからは放射領域の大 きさが推定されるため、重要なパラメータである。しかし、観測データから推定される構造関数は、デー タの不完全性により、真の構造関数とは異なることが多いことが、最近の研究により明らかになった [11]。

図 1.6: かなた望遠鏡の観測から得られたブレーザー 3C454.3 の光度曲線。

図 1.7 がその一例である。左図は BL Lac 天体 Mrk 501 の X 線データから得られた構造関数で、0.88 日に 折れ曲がりが見られる。一方、右図は本来そのような折れ曲り構造が無いシミュレーションデータから得ら れた構造関数で、0.90 日付近に偽の折れ曲りが現れている。これは、データの有限の期間からしか得られ ないため、タイムスケールが長い領域の構造関数はデータの分散に漸近してしまうことが主な原因である。 このような問題を回避できる手法として最近注目されているのが、確率的モデリングの手法である。例え ば、Ornstein-Uhlenbeck (OU) 過程は以下の式で定義される確率過程である。

$$dm(t) = -\omega_0 m(t)dt + \sigma dW(t) \tag{1.1}$$

ここで、m(t) はある時系列データ、W(t) はブラウン運動を記述するウィーナー過程、 ω_0 , σ は OU 過程のモ デルパラメータである。OU 過程は damped random walk モデルとも呼ばれ、また、2 章で述べるガウス過 程に指数カーネルを用いたモデルと同等なものである。OU 過程は活動銀河核の時間変動をよく表現するモ デルとして知られている [6]。OU 過程のパワースペクトルは角周波数 ω_0 以下で平らになり、それ以上で は $1/\omega^2$ で減衰する [7]。そのような折れ曲りのあるパワースペクトルは活動銀河核由来の変動をよく表現 し、OU 過程回帰によってデータからバイアス無しに折れ曲りのタイムスケールを推定することが可能とな る。ブレーザーについても、フェルミ宇宙ガンマ線望遠鏡によって観測されたガンマ線光度曲線が OU 過程 を用いて解析されている [6]。図 1.8 はその一例で、ガンマ線フラックスの対数が OU 過程回帰でよく説明 できており、この解析からタイムスケールの推定が可能であることが示されている。

図 1.7: X 線天文衛星の観測から得られた Mrk 501 の 構造関数 (左) とシミュレーションデータから得られた 構造関数 (右)[11]。

図 1.8: Fermi の観測データに OU 過程回帰を行った結果 [6]。二段目のパネルが OU 過程を行った結果であ り、最も確率が高い部分を赤線が示している。下段が OU 過程と実データの残差である。

1.3 本研究の目的

本研究は、BL Lac と FSRQ の光度の時間変動から活動銀河核のジェットの特徴を探ることを目的に、光 度曲線の特徴抽出にガウス過程を用いて解析を行った。次章で説明するように、ガウス過程はブレーザーの 光度変動のように、物理的な関数系が不明な時系列データを取り扱うのに適している。また、得られた光度 曲線の特徴量から、FSRQ と BL Lac を判別するのに有用な特徴量を機械学習的な判別モデルを用いて探し た。そして、FSRQ と BL Lac のそれぞれの光度曲線の特徴から、ブレーザーのジェットの変動機構を議論 する。

本論文の構成は以下のとおりである。まず第2章にて本研究で使用するガウス過程や判別の理論について 述べる。続く第3章で、使用するデータについて説明を行う。第4章では、解析により得られた結果を示 す。第5章では、結果の考察を行い、第6章で本研究で得られた知見についてまとめる。

第2章 解析手法およびその理論

この章では、この研究で取り扱う解析手法の理論について述べる。その内容は大きく2つに分けられる。 1つは、分類問題を取り扱うものである。ここではまず、分類問題をどのように定式化するか一般的なこと を述べる。その後に、今回の研究で扱った線形問題と非線形問題の解決方法を述べる。

もう1つは、ガウス過程についてである。これは確率過程の一種であり、関数形が不明なデータを取り扱うのに適している。

以上について、この章では取り扱う。

2.1 2クラス判別問題の概要

この研究は BL Lac と FSRQ の判別問題を扱う。つまりは、2 クラス (2 種類)の分類問題である。このような問題を取り扱うとき、サンプルを特徴づける1つ、もしくは複数のパラメータが与えられており、それらは一般的に特徴量ベクトルとして扱われる。

その与えられたパラメータのベクトルを1次元のスカラー量に変換する。そして、変換されたスカラー量 に対して適当な、しきい値を設定する。これにより、しきい値を上回るものをクラスA、下回るものをクラ スBというように分類することが可能になる。したがって、パラメータベクトルを1次元量に変換する方 法が分類器の性能を決定する。最も単純なのは全てのパラメータを用いた線形変換であり、次節で紹介す る。一般の分類問題においては線形の判別境界では不十分であり、カーネル関数を用いた非線形変換につい てはその後で紹介する。

2.2 フィッシャーの線形判別

まずは、一般的な線形判別モデルを概説する。与えられたパラメータベクトルを x とする。これをスカ ラー量に置きかえるための重みベクトルを w とおく。すると、線形判別モデルは式 2.1 のように表すことが できる。

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 \tag{2.1}$$

ここで、 w_0 は任意に設定するバイアスパラメータである。この y(x) の正負で 2 クラス分類を行う。またこのことから、分類の区切りとなる決定境界は、y(x) = 0 で定義されている。

先の式 2.1 では、線形判別モデルの一般式を示した。本研究では、特にフィッシャーの線形判別を使用 する。

フィッシャーの線形判別は、クラス間の分散が大きくなるように、かつ、クラス内の分散が小さくなるように決定境界を定義する。クラス間の分散は、ここでは各クラスごとの平均間の距離で定義する。これより、クラス間分散 (*m*₂ – *m*₁)² は、次の式 2.2 で定義される。

$$m_2 - m_1 = \mathbf{w}^{\rm T} (\mathbf{m}_2 - \mathbf{m}_1) \tag{2.2}$$

ここで

$$m_k = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{m}_k. \tag{2.3}$$

また、 m_k は、クラス C_k のパラメータベクトルの平均である。各クラスの母数 N_k を用いて以下のように書ける。

$$\boldsymbol{m}_{k} = \frac{1}{N_{k}} \sum_{n \in C_{k}} \boldsymbol{x}_{n} \tag{2.4}$$

一方、クラス内分散 s_k^2 は、各クラスの、射影後のスカラー量の分散で定義する。そのため、以下の式 2.5 で定義される。

$$s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$$
(2.5)

以上の条件から、フィッシャーの線形判別で w は以下の式 2.6 を最大化することで得られる。

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
(2.6)

この式 2.6 は、 $y = w^T x$ と、式 2.3、式 2.5 から次のように書き直せる。

$$J(w) = \frac{w^{\mathrm{T}} S_{\mathrm{B}} w}{w^{\mathrm{T}} S_{\mathrm{W}} w}$$
(2.7)

ここで、 S_W は以下で定義される総クラス内共分散行列である。

$$S_{W} = \sum_{n \in C_{1}} (\boldsymbol{x}_{n} - \boldsymbol{m}_{1}) (\boldsymbol{x}_{n} - \boldsymbol{m}_{1})^{T} + \sum_{n \in C_{2}} (\boldsymbol{x}_{n} - \boldsymbol{m}_{2}) (\boldsymbol{x}_{n} - \boldsymbol{m}_{2})^{T}$$
(2.8)

また、S_Bは以下で定義されるクラス間分散行列である。

$$S_B = (m_2 - m_1)(m_2 - m_1)^{\rm T}$$
(2.9)

式 2.8 を w で微分して計算することにより、フィッシャーの線形判別では、w は以下のように与えられる ことがわかる。

$$\boldsymbol{w} \propto \boldsymbol{S}_{\mathrm{W}}^{-1}(\boldsymbol{m}_2 - \boldsymbol{m}_1) \tag{2.10}$$

式 2.10 がどのような意味を持っているか、直観的な説明を行う。線形分類をするにあたって、最も簡単な方法は、各クラスの (パラメータの) 平均に対して垂直な決定境界を定めるものである。数式では、 $w \propto (m_2 - m_1)$ と書かれるものである。しかし、図 2.1 からわかるように、このように定義される決定境界は必ずしも最適なものとは限らない。

これでは実用性に大きく欠けるため、補正を加える。そして得られたものが式 2.10 である。この式は、 導出の過程でクラス内の分散が小さくなるようにして、決定境界を定義している (図 2.2)。

図 2.1: $w \propto (m_2 - m_1)$ により得られた決定境界 [8]。クラス間分散を考えるだけでは、正しく決定境界をひけていない。

図 2.2: フィッシャーの線形判別により得られた決定境界 [8]。図 2.1 に比べて正しくクラス分離できている。

2.3 カーネル法

非線形判別に用いるカーネル法に関して、ここで簡単な説明を行う。

カーネル関数とは、パラメータベクトル x の非線形写像 $\phi(x)$ の内積を特定の関数系で与えるものであり、 機械判別では 2 つのパラメータベクトルの類似性の指標として使われることが多い。一般的にカーネル関 数は k(x, x') のように記述される。

特徴空間への写像 $\phi(x)$ に基づくモデルでは、カーネル関数は式 2.11 のように与えられる。

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}') \tag{2.11}$$

このように、カーネル関数は、k(x,x') = k(x',x) である。また、このようにカーネル関数を特徴空間の内 積とみなすことで、既存の線形アルゴリズムをカーネル関数を用いて非線形に拡張することが可能である。 本研究では 2.4 節で述べるスパースロジスティック回帰と 2.6 節で述べるガウス過程においてカーネル法

を用いているが、そのなかで用いたカーネル関数は2種類ある。それを簡単に紹介する。

1 つは Radial Basis Function (RBF) カーネルであり、その形からガウスカーネルとも呼ばれ、以下の形をしている。

$$k(\boldsymbol{x}, \boldsymbol{x}') = A_{\text{RBF}} \exp\left(\frac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{l_{\text{RBF}}}\right)$$
(2.12)

もう1つは指数カーネルである。これは、以下の形をしている。

$$k(\boldsymbol{x}, \boldsymbol{x}') = A_{\exp} \exp\left(\frac{|\boldsymbol{x} - \boldsymbol{x}'|}{l_{\exp}}\right)$$
(2.13)

機械判別の問題などににカーネルを用いる際には、使用するカーネルにより結果が大きく変わる。これ は、後述のガウス過程において、それぞれのカーネルを用いて比較を行う。

2.4 スパースロジスティック回帰

続いて、本研究で使用する非線形判別の、スパースロジスティック回帰の説明を行う。

ロジスティック回帰は、回帰と名のつくものの、むしろ分類のためのモデルである。これで用いられるロジスティックシグモイド関数 *σ*(*a*) は、以下の式で定義される。

$$\sigma(a) = \frac{1}{1 + \exp(-a)} \tag{2.14}$$

また、ロジスティックシグモイド関数を図示すると、図 2.3 のようになり、*a* が小さくなると0 に、大きくなると1 に漸近する。

ロジスティックシグモイド関数は、あるパラメータベクトル x を持ったサンプルがクラス C_1 である事後 確率 $P(C_1|x)$ を変形したものであり、その関係は以下のように書ける。

$$p(C_1|\mathbf{x}) = y(\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$
(2.15)

非線形の決定境界を定義する際には、多くの場合、xをカーネル関数などを用いて別空間に射影し、特徴 ベクトル $\phi = \phi(x)$ に置き換える。

図 2.3: 式 2.14 で表される、ロジスティックシグモイド関数 *σ*(*a*) を図示したもの。

式 2.14 は 2 クラスの場合のモデルだが、多クラスの問題に拡張することもでき、この時は以下のようになる。

$$P(\mathbf{y}^{(i)} = 1 | \mathbf{x}, \mathbf{w}) = \frac{\exp\left(\mathbf{w}^{(i)^{T}} \mathbf{x}\right)}{\sum_{j=1}^{m} \exp\left(\mathbf{w}^{(j)^{T}} \mathbf{x}\right)}$$
(2.16)

この場合、wを求めるために、次の対数尤度関数を用いる[9]。

$$l(\mathbf{w}) = \sum_{j=1}^{n} \log P(\mathbf{y}_j | \mathbf{x}_j, \mathbf{w}) = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} y_j^{(i)} \mathbf{w}^{(i)^T} \mathbf{x}_j - \log \sum_{i=1}^{m} \exp\left(\mathbf{w}^{(i)^T} \mathbf{x}_j\right) \right]$$
(2.17)

これを用いて、次の式で最大となる w を求める。

$$\hat{w}_{\text{MAP}} = \arg \max \left[l(w) + \log p(w) \right]$$
(2.18)

ここで、p(w)は、スパース項 λ を加えた以下の式で表される。

$$p(\mathbf{w}) \propto \exp(-\lambda \|\mathbf{w}\|_{1}) \tag{2.19}$$

ここで、 $||w||_1$ は ℓ_1 ノルム $\sum_{\ell} |w_{\ell}|$ である。 ℓ_1 ノルムを事前分布として用いることで、ベクトル w は、なるべく多くの要素がゼロになり、スパースなベクトルが得られる。カーネルを用いたロジスティック回帰では過学習が起こりやすいが、 ℓ_1 ノルムで制約を与えることによって、それを防ぐ。この手法をスパースロジスティック回帰と呼ぶ。

w

2.5 判別モデルの性能評価

ここで、判別モデルの性能評価方法について述べる。

2.5.1 交差検証

サンプルデータを用いて判別器を作成したとする。その判別器は、サンプルデータに適したものとして作 成されている。その判別器の性能はサンプルデータにとっては最適だが、新規のデータに対しても高い性能 を持っているかどうかは自明ではない。そのような判別器は多くの場合、新規のデータに当てはめた時の性 能は下がる傾向にある。

このようなことを避けるために、交差検証という方法を用いる。交差検証を用いるとき、データを2つの グループに分ける。1つは、判別器作成のために用いる教師データ用の集団である。そしてもうひとつは、 判別器の性能評価に用いるテストデータ用の集団である。まず教師データ用の集団で判別器を最適化し、次 にその判別器をテストデータ用の集団に適用し、性能指標を得る。つまり、テストデータ用の集団を新規の データとして扱う。このようにすることで、判別器の妥当な性能が評価できる。

データの分割を k 個の集団へ行う場合の交差検証を k 分割交差検証と呼ぶ。特に、手元のデータ数が N 個のときの N 分割交差検証を 1 個抜き交差検証と呼ぶ。k 分割交差検証ではテストデータを k 通り試すことで、ある判別器に対して k 個の性能指標が得られることになる。それらを平均して最終的な性能指標とすることが一般的である。

2.5.2 ROC 曲線 (Receiver Operatorating Characteristic curve) と AUC (Area Under the Curve)

続いて、AUC(Area Under the Curve) による判別器の評価方法について述べる。その説明を行う前に、ROC 曲線 (Receiver Operatorating Characteristic curve) についての説明を行う。

ROC 曲線とは、2 クラスの判別問題において、縦軸を真陽率 (True Positive rate)、横軸を偽陽率 (False Positive rate)とした曲線グラフである。真陽率とは、2 クラスのうち 1 つを陽性としたとき、本来が陽性であるもののうち、正しく陽性と判別されている割合のことを指す。対して偽陽率とは、2 クラスのもう 1 つを陰性としたとき、本来が陽性であるもののうち、誤って陰性と判別されているものの割合を指す。

クラス分類のしきい値を変えつつ、横軸を偽陽率、縦軸を真陽率として曲線を描くと、偽陽率 0、真陽率 0 と、偽陽率 1 を結ぶ ROC 曲線が得られる。

ROC 曲線以下の部分の面積のことを AUC (Area Under the Curve) と呼び、判別器の性能評価の指標となる。これは、正答率とは別にまた、サンプル数がクラスによって非常に異なる場合でも指標として使用できる。例えば、データサンプルのうち、クラス1の割合が 0.99 で、クラス2の割合が 0.01 の場合、全てをクラス1と判別する判別器の正答率は 0.99 である。この場合、正答率は判別器の性能評価に正しく利用できない。このような場合に AUC が正答率に比べて実用的な性能評価の指標となる。

データサンプルのクラスが完全にランダムの場合、判別器の真陽率と偽陽率の比はそれぞれ 1:1 となるはずである。その場合、AUC の値は 0.5 となる。

ROC 曲線の模式図を図 2.4 に示す。この図では陽性なクラスが青色で陰性なクラスが橙色で示されている。決定境界が黒線で示されている。この図から、決定境界上における陽性クラスの累積分布 (青点)が ROC 曲線の縦軸に対応し陰性クラスの累積分布 (緑点)が横軸に対応していることがわかる。このように様々な決定境界に対して真陽率と偽陽率を計算することで ROC 曲線 (図 2.4 一番下)が得られ、そこから AUC が得られる。

図 2.4: ROC 曲線の模式図。上の図が人工サンプルの分布図。真ん中の図がその累積分布。下の図が ROC 曲線である。各図の縦線と青点は対応している。

2.6 ガウス過程

ガウス過程とは、N 個のデータを N 次元正規分布として表現する確率過程である。本研究では、時系列 データである光度曲線の回帰に利用する。光度曲線は時刻 t と等級 m(t) により与えられる。ガウス過程を 用いることにより、等級 m(t) の予測分布が、正規分布により与えられる。

ガウス過程では、既知のデータ点が N 個あるとき、それらを N 次元正規分布 N(0, K) からのサンプルで あると考える。ただし、 K は N × N の次元を持つ分散共分散行列である。K にはデータ間の相関の情報が 入り、ここに前述のカーネル関数を用いる。

次に、観測データにガウス過程を当てはめることをガウス過程回帰という。ここでは光度曲線データが $m(t) = f(t) + \varepsilon$ 、ただし ε は誤差項で、平均0、分散 β^{-1} の正規分布に従う。すなわち $p(m_n|f_n) = N(m_n|f_n, \beta^{-1})$ 。 f(t)はガウス過程で与えられるものとし、つまりp(f) = N(f|0, K)。この時、観測データm(t)の確率分布は fについての周辺分布であり、fで積分することによって、以下のように与えられる。

$$p(\boldsymbol{m}) = \int p(\boldsymbol{m}|\boldsymbol{f})p(\boldsymbol{f})d\boldsymbol{f} = N(\boldsymbol{f}|\boldsymbol{0}, C)$$
(2.20)

ただし、分散共分散行列 Cは、以下の式 2.21 のようになる。

$$C(\boldsymbol{x}_n, \boldsymbol{x}_m) = k(\boldsymbol{x}_n, \boldsymbol{x}_m) + \beta^{-1} \delta_{nm}$$
(2.21)

ここで、*k* は任意のカーネル関数である。この分散共分散行列*C* を用いて、予測分布のパラメータは以下のように表される。

$$m(\boldsymbol{x}_{N+1}) = \boldsymbol{k}^{\mathrm{T}} \boldsymbol{C}_{N}^{-1} \boldsymbol{m}$$
(2.22)

$$\sigma^2(\mathbf{x}_{N+1}) = c - \mathbf{k}^{\mathrm{T}} C_N^{-1} \mathbf{k}.$$
(2.23)

ここで、k は、要素 $k(x_n, x_{N+1})$ (n = 1, ..., N) を持つベクトルであり、c はスカラー $c = k(x_n, x_{N+1}) + \beta^{-1}$ である。

このように、N 個の既知のデータが存在するとき、新たなデータ点 x_{N+1} に対する値が、正規分布 $N(m, \sigma)$ により与えられる。

ガウス過程は例えば時系列データの補間などによく用いられる。具体的な物理モデルやその関数形が不明 な場合でもデータ全体から欠損箇所の期待値と分散が高い精度で与えられる。また、時系列データの特性 はカーネル関数 *k*(*x*,*x*') のパラメータ、および、測定値のノイズ *ε* の分散 *β*⁻¹ の最適化に反映される。

上記のような、カーネルを用いた推定では、計算量が既知のデータ数 N に大きく依存することに注意が 必要である。

ガウス過程は、使用するカーネルにより、結果が大きく変わる。図 2.5 と、図 2.6 は同一のブレーザー光 度曲線データに対して、それぞれ式 2.12 と式 2.13 で表される RBF カーネルと指数カーネル用いてガウス 過程回帰を行った結果である。RBF カーネルを用いて推定を行った図 2.5 の方を見てみる。既知データを滑 らかに結ぶような結果が得られ、短いタイムスケールの変動はノイズとして扱われていることがわかる。こ れは RBF カーネルによって比較的時刻が離れたデータ点でも高い相関が要求されたためだと考えられる。

対して、指数カーネルを用いて推定を行った図 2.6 を見てみる。こちらは、RBF カーネルに比べて、既知 データの短いタイムスケールの変動もよく再現していることがわかる。

図 2.5: RBF カーネルを用いて光度曲線に対してガウス過程を行った結果。赤点は観測値である。データ点 1つ1つの影響は小さく、推定結果は長い時間スケールの変動に対応している。

図 2.6: 指数カーネルを用いてガウス過程を行った結果。推定結果は短い時間スケールの変化に対応している。

第3章 使用するデータについて

本研究では Itoh et.al. (2016) [10] で公開されたブレーザー天体の観測データを使用した。このデータは、 広島大学の所有するかなた望遠鏡で 2006 年から 2014 年までに取得されたものである。広島大学かなた望 遠鏡チームでは 2006 年の東広島天文台の開所当時から継続してブレーザーのモニター観測を行っており、 Itoh et.al. (2016)[10] は 2014 年までのデータの最終版を公開するものである。かなた望遠鏡におけるブレー ザーのモニター観測計画全体については文献 [4][10] に詳しく述べられている。

本章ではそのデータと観測装置について簡単に述べる。

3.1 観測装置について

データ取得に際して使用されたのは 1.5m 光学赤外望遠鏡の「かなた」である。

観測では、2 種類の観測装置が使用されている。1 つは Triple Range Imager and SPECtrograph (TRISPEC) である。これは 2006 年から 2011 年の間の観測に使用されている。TRISPEC は可視光 1 波長帯、近赤外線 2 波長帯で同時に撮像が行える。本データは可視光の、V バンド (波長 500nm 付近)、近赤外線の J バンド (波長 1.2µm 付近), Ks バンド (波長 2.2µm 付近) の 3 バンド同時に取得された。観測モードは偏光撮像モードが使用された。本研究ではこのうち V バンドの測光データのみを用いた。

使用されたもう1つの観測装置は Hiroshima One-shot Wide-field Polarimeter (HOWPol) である。これは2009年以降の観測に使用されている。HOWPol は可視光用の CCD による観測が可能で、特にダブルウォラストンプリズムを用いた時間分解能の高い高速偏光観測モードが、通常の偏光観測モードと共に利用できる。本データは通常の偏光観測モードで取得されたものである。測光バンドは*Rc* バンド (波長 660nm 付近) と *V* バンドが使用されており、本研究ではこのうち *V* バンドの測光データのみを用いた。

3.2 解析に用いたデータ

本研究で用いたデータの BL Lac と FSRQ のブレーザーの型分類については、Itoh et.al. (2016)内で示されている分類に基づいて行った。

また、Itoh et.al. (2016) で示されているデータのうち次の2天体'3C 273'と'PKS 0454-234' については、 本研究では使用しなかった。この2天体はFSRQ に分類されている天体であるが、ジェットからの放射に対 して降着円盤からの熱放射の寄与が大きく、光度曲線の変動振幅が小さくなっていることが知られている [4]。本研究では天体の時間変動はジェットからの放射が卓越しているサンプルを用いるため、この2天体 は本研究のサンプルからは除外した。

光度曲線データの全期間に対してガウス過程回帰を行った場合、観測されたデータ点数の少ない期間で は、1つの観測点が結果に強い影響力を持つ。そのため、本研究では1年ごとに光度曲線を区切り、年ごと に1つのサンプルとして扱った。また、ガウス過程回帰する際には、各サンプルの平均等級を差し引くことで、等級の平均が0になるよう正規化した。

表 3.1 に全てのサンプルの情報を載せる。サンプルは天体名と観測期間で定義され、それぞれの分類および、シンクロトロン放射の極大周波数 (*v*_{peak})、データ点数を示した。21 天体の 62 サンプルを本研究の対象 とした。

本研究では、これらのサンプルに対して RBF カーネルと指数カーネルの 2 種類のガウス過程回帰を行い (2.3,2.6 節)、合計 6 個のパラメータを得る。これら 6 個のパラメータを各サンプルの光度曲線を特徴づけ るパラメータと考える。次に、FSRQ と BL Lac を分類するのに適したパラメータの組み合わせを調べるた め、この 6 個の全ての組み合わせ (2⁶ – 1 通り) に対して、機械判別を行う。判別は線形判別 (2.2 節) とス パースロジスティック回帰 (2.4 節) の 2 通りを試す。判別モデルの性能は AUC 値 (2.5.2 節) を用いる。

ObjectName	Туре	$log(v_{peak})$	mjd_min	mjd_max	データ点数
S2 0109+22	BL Lac	14.6	54581	54974	69
S2 0109+22	BL Lac	14.6	56086	56413	12
Mis V1436	FSRQ	13.6	54790	54976	25
Mis V1436	FSRQ	13.6	54976	55414	78
3C 66A	BL Lac	15.1	54612	54974	114
3C 66A	BL Lac	15.1	54974	55345	142
3C 66A	BL Lac	15.1	55345	55671	72
3C 66A	BL Lac	15.1	55671	56073	30
3C 66A	BL Lac	15.1	56073	56409	69
3C 66A	BL Lac	15.1	56409	56797	56
AO 0235+164	BL Lac	13.5	54617	54946	70
S5 0716+714	BL Lac	14.6	54665	55050	138
S5 0716+714	BL Lac	14.6	55050	55389	156
S5 0716+714	BL Lac	14.6	55389	55746	98
S5 0716+714	BL Lac	14.6	55746	56125	98
S5 0716+714	BL Lac	14.6	56125	56484	83
S5 0716+714	BL Lac	14.6	56484	56868	51
OJ 49	BL Lac	13.5	54683	55002	25
OJ 49	BL Lac	13.5	55002	55456	27
OJ 287	BL Lac	13.4	54696	55045	100
OJ 287	BL Lac	13.4	55045	55451	116
OJ 287	BL Lac	13.4	55451	55773	40
OJ 287	BL Lac	13.4	55773	56161	42
OJ 287	BL Lac	13.4	56161	56488	60
OJ 287	BL Lac	13.4	56488	56872	54
Mrk 421	BL Lac	16.6	55127	55438	36
Mrk 421	BL Lac	16.6	55438	55772	49

ON 325	BL Lac	15.5	54745	55078	32
3C 279	FSRQ	12.6	54621	55115	58
3C 279	FSRQ	12.6	56161	56528	38
3C 279	FSRQ	12.6	56528	56938	48
PKS 1502+106	FSRQ	13.6	54568	55045	60
PKS 1510-089	FSRQ	13.1	54759	55124	50
RX J1542.8+612	FSRQ	14.1	54895	55490	99
PG 1553+113	BL Lac	15.4	55155	55508	37
PG 1553+113	BL Lac	15.4	55508	55804	15
PG 1553+113	BL Lac	15.4	55804	56228	37
PG 1553+113	BL Lac	15.4	56228	56629	65
PG 1553+113	BL Lac	15.4	56629	56956	50
Mrk 501	BL Lac	17.1	55817	56289	53
Mrk 501	BL Lac	17.1	56289	56660	84
Mrk 501	BL Lac	17.1	56660	56956	50
PKS 1749+096	FSRQ	13.1	54609	54838	60
PKS 1749+096	FSRQ	13.1	55880	56780	77
3C 371	FSRQ	14.7	54555	54952	81
1ES 1959+650	BL Lac	16.6	54577	54934	40
1ES 1959+650	BL Lac	16.6	56135	56859	121
PKS 2155-304	BL Lac	16.0	54628	54925	57
PKS 2155-304	BL Lac	16.0	54925	55253	72
BL Lac	BL Lac	13.6	54537	54908	100
BL Lac	BL Lac	13.6	54908	55270	104
BL Lac	BL Lac	13.6	55270	55605	58
BL Lac	BL Lac	13.6	55605	56011	67
BL Lac	BL Lac	13.6	56011	56347	82
BL Lac	BL Lac	13.6	56347	56735	100
CTA 102	FSRQ	13.6	56140	56339	41
CTA 102	FSRQ	13.6	56461	56688	32
3C 454.3	FSRQ	13.6	54542	54930	108
3C 454.3	FSRQ	13.6	54930	55270	155
3C 454.3	FSRQ	13.6	55270	55795	91
3C 454.3	FSRQ	13.6	56000	56370	53
3C 454.3	FSRQ	13.6	56370	56744	78

表 3.1: 本研究で使用するデータサンプル一覧。合計 21 天体の 62 サンプルである。天体名、ブレーザーの 分類型名に加えて、シンクロトロン放射のピーク位置 (log(v_{preak}))、サンプルに定義した観測期間 (mjd_min, mjd_max)、その範囲内で観測した日数を示している。

第4章 結果

光度曲線データに対してガウス過程回帰を行い、パラメータの取得を行った。そして、その取得したパ ラメータを用いてブレーザーの分類型に関する機械判別を行い BL Lac と FSRQ の比較を行った。この章で は、ガウス過程回帰の結果と、判別の結果について共に示す。

4.1 光度曲線データに対するガウス過程の結果

ブレーザーの光度曲線データに対して、RBF カーネルと指数カーネルを用いてガウス過程回帰を行った。 これにより、式 2.12 や式 2.13 中で現れるカーネル関数のパラメータ、A および l が得られた。また、ガウス 過程で得られた回帰モデルとの誤差 σ² も得られた。これら 3 種のパラメータが RBF カーネルと指数カー ネルに対して得られたため、計 6 個のパラメータが得られた。これらの値をサンプルごとに以下の表 4.1 に 示す。また、各サンプルとガウス過程回帰によって得られたモデル光度曲線およびその 95% 信頼区間を付 録 A (RBF カーネルの結果)、および B (指数カーネルの結果)に載せている。

ObjectName	Туре	A _{exp}	lexp	$\sigma^2_{ m exp}$	$A_{\rm RBF}$	$l_{\rm RBF}$	$\sigma^2_{ m RBF}$	mjd_min	mjd_max
S2 0109+22	BL Lac	0.0171	3.2434	0	0.0067	34.851	0.0121	56086	56413
S2 0109+22	BL Lac	0.065	4.1745	0	0.048	4.1053	0.0168	54581	54974
Mis V1436	FSRQ	0.0818	12.509	0	0.0783	9.5568	0.015	54790	54976
Mis V1436	FSRQ	0.5256	71.8507	0	0.1204	9.4583	0.0348	54976	55414
3C 66A	BL Lac	0.0414	9.6753	6e-04	0.0337	4.0536	0.0042	54612	54974
3C 66A	BL Lac	0.0583	19.4648	0	0.0436	8.2301	0.0049	54974	55345
3C 66A	BL Lac	0.0356	7.6587	0	0.034	3.2634	0.0026	55345	55671
3C 66A	BL Lac	0.0324	16.1558	0	0.0268	10.4877	0.0037	56073	56409
3C 66A	BL Lac	0.0224	42.2057	0.0016	0.0168	10.4983	0.0024	56409	56797
3C 66A	BL Lac	0.0122	11.0967	0	0.0122	7.0056	0.001	55671	56073
AO 0235+164	BL Lac	0.8566	36.6927	0	0.9619	39.502	0.1471	54617	54946
S5 0716+714	BL Lac	0.322	11.6167	0	0.2351	9.5445	0.0538	55746	56125
S5 0716+714	BL Lac	0.3303	26.9027	0	0.2351	13.228	0.0234	55389	55746
S5 0716+714	BL Lac	0.126	9.2321	0.0116	0.1038	4.0375	0.0242	55050	55389
S5 0716+714	BL Lac	0.3654	52.2543	0.0127	0.3565	29.0472	0.0401	56125	56484
S5 0716+714	BL Lac	0.1538	12.7234	0	0.13	5.2058	0.0131	54665	55050
S5 0716+714	BL Lac	0.3108	20.0389	0	0.2741	9.0416	0.0273	56484	56868
OJ 49	BL Lac	0.0837	13.6947	0	0.0866	11.0671	0.0096	54683	55002

OJ 49	BL Lac	0.0658	7.0801	0.0079	0.0485	6.2997	0.0228	55002	55456
OJ 287	BL Lac	0.1024	14.0854	0	0.0905	4.5099	0.0028	56488	56872
OJ 287	BL Lac	0.0604	13.5952	0	0.0524	5.5208	0.0048	55451	55773
OJ 287	BL Lac	0.162	14.7606	0.0028	0.1227	4.207	0.0133	54696	55045
OJ 287	BL Lac	0.1404	29.1319	0	0.1242	12.2881	0.0098	56161	56488
OJ 287	BL Lac	0.2	35.8616	0	0.132	10.2514	0.0074	55045	55451
OJ 287	BL Lac	0.1914	29.7764	0	0.1593	10.304	0.0115	55773	56161
Mrk 421	BL Lac	0.0938	21.9309	0	0.092	7.5343	0.0039	55438	55772
Mrk 421	BL Lac	0.1114	104.5393	0.0099	0.1293	53.5241	0.0134	55127	55438
ON 325	BL Lac	0.0128	13.1443	0.0013	0.0049	31.533	0.0055	54745	55078
3C 279	FSRQ	0.4565	69.0934	0	0.285	13.3968	0.0162	54621	55115
3C 279	FSRQ	0.0673	57.0011	0	0.0595	20.4249	0.0023	56161	56528
3C 279	FSRQ	0.2255	64.0844	0	0.1598	24.225	0.0124	56528	56938
PKS 1502+106	FSRQ	0.2912	22.6855	0.0125	0.2801	8.778	0.0292	54568	55045
PKS 1510-089	FSRQ	0.3808	8.7428	0	0.3122	2.6489	0.0147	54759	55124
RX J1542.8+612	FSRQ	0.0188	11.7667	0	0.0182	3.8993	8e-04	54895	55490
PG 1553+113	BL Lac	0.0367	71.3352	0	0.0222	13.4939	0.001	55804	56228
PG 1553+113	BL Lac	0.0634	158.9784	0	0.0358	22.6094	0.0016	55155	55508
PG 1553+113	BL Lac	0.0116	27.1288	0	0.01	15.9195	0.0013	55508	55804
PG 1553+113	BL Lac	0.0091	11.0718	0	0.0096	30.6333	0.0015	56629	56956
PG 1553+113	BL Lac	0.0978	255.8096	0	0.0576	24.5242	6e-04	56228	56629
Mrk 501	BL Lac	0.0064	0.7642	0.0012	0.0024	29.561	0.0058	56660	56956
Mrk 501	BL Lac	0.0086	29.97	0.0075	0.0094	13.7314	0.0073	55817	56289
Mrk 501	BL Lac	0.0106	54.5679	0.0092	0.0148	64.5185	0.0105	56289	56660
PKS 1749+096	FSRQ	0.3657	101.2685	0.1725	0.3013	43.2065	0.201	55880	56780
PKS 1749+096	FSRQ	0.4884	46.2234	0	0.4867	13.9951	0.0255	54609	54838
3C 371	FSRQ	0.0173	21.269	0.0012	0.0198	33.3588	0.0045	54555	54952
1ES 1959+650	BL Lac	0.0731	93.3806	0	0.0584	30.3544	0.0025	56135	56859
1ES 1959+650	BL Lac	0.0101	15.0602	9e-04	0.0086	7.489	0.002	54577	54934
PKS 2155-304	BL Lac	0.1409	48.5103	0	0.1268	25.7568	0.0083	54628	54925
PKS 2155-304	BL Lac	0.0652	17.2303	0	0.0604	8.5923	0.0049	54925	55253
BL Lac	BL Lac	0.3418	15.0286	0	0.6291	143.4775	0.0613	56347	56735
BL Lac	BL Lac	0.1156	11.5457	0.0053	0.0871	9.9262	0.0258	55605	56011
BL Lac	BL Lac	0.5332	22.0798	0	0.3187	32.9341	0.0582	56011	56347
BL Lac	BL Lac	0.0409	4.9601	0	0.0277	5.0873	0.0107	54537	54908
BL Lac	BL Lac	0.1277	34.1622	0.0111	0.1373	17.8757	0.0183	55270	55605
BL Lac	BL Lac	0.0789	13.7887	0.015	0.0681	8.1914	0.0253	54908	55270

CTA 102	FSRQ	0.3502	6.333	0	0.2763	16.6982	0.0878	56140	56339
CTA 102	FSRQ	0.0263	3.2289	0.0066	0.0201	3.7803	0.0128	56461	56688
3C 454.3	FSRQ	0.4756	53.037	0	0.3364	19.4396	0.0246	54542	54930
3C 454.3	FSRQ	0.192	18.7656	0.0138	0.1427	3.0063	0.0208	56370	56744
3C 454.3	FSRQ	0.2766	42.534	0.0073	0.2068	8.4763	0.0176	54930	55270
3C 454.3	FSRQ	0.3508	55.8357	0.0279	0.3099	21.3444	0.0503	55270	55795
3C 454.3	FSRQ	0.0413	18.909	0	0.035	5.6092	0.0025	56000	56370

表 4.1: ガウス過程回帰により得られたパラメータ一覧。左から、天体名、天体型、式 2.12 と 2.13 で現れる パラメータ、*A と l* と、モデルとデータの誤差パラメータ σ^2 (指数カーネル、RBF カーネルそれぞれ)、サ ンプルの観測期間 (MJD)、を示している。

また、各サンプルごとに得られたパラメータについて、ヒストグラムを、以下の図 4.1、図 4.2、図 4.3、 図 4.4、図 4.5、図 4.6 に示す。これらのヒストグラムから、*A*_{exp} や *A*_{RBF} の分布が BL Lac と FSRQ で異な るように見える。このことは、これら 2 つのパラメータが FSRQ と BL Lac の光度変動の特徴の違いを表し ている可能性を示唆している。

図 4.1: A_{exp} のヒストグラム。上: BL Lac 型。、下: FSRQ 型。

4.2 線形判別による結果

ガウス過程回帰により得られたパラメータを用いて、2クラス判別を行った。ここでは、得られた6パラ メータのうち、使用するパラメータの組み合わせを変えつつ、2⁶-1通りの全ての組み合わせで計算を行っ

図 4.2: *l*_{exp} のヒストグラム。上: BL Lac 型。、下: FSRQ 型。

図 4.3: σ_{exp}^2 のヒストグラム。上:BL Lac 型。、下:FSRQ 型。

図 4.4: *A*_{RBF} のヒストグラム。上: BL Lac 型。、下: FSRQ 型。

図 4.5: *l*_{exp} のヒストグラム。上: BL Lac 型。、下: FSRQ 型。

図 4.6: σ_{exp}^2 のヒストグラム。上: BL Lac 型。、下: FSRQ 型。

た。その結果のうち、AUC が高いものから順に 30 通りの結果を、図 4.7 に示す。この図では、使用したパ ラメータの列を黒く塗っている。例えば、一番上の最も AUC が高い計算結果では、 A_{exp} 、 l_{exp} 、 σ_{exp}^2 、 A_{RBF} 、 l_{RBF} の 5 つのパラメータを用いて計算したもので、AUC = 0.75 である。

高い AUC 値を示す上位 5 つの組み合わせの中で共通して選ばれている変数は A_{exp} 、 σ_{exp}^2 、 l_{RBF} の 3 つで ある。また、最も AUC が高い結果と、それについで 2 番目に高い結果を比較すると、 A_{exp} 、 σ_{exp}^2 、 l_{RBF} の 3 つのみの判別で、ほぼ変わらない AUC 値が得られている。これらの結果から、 A_{exp} 、 σ_{exp}^2 、 l_{exp} の 3 つの 変数が良い指標であることがわかる。

4.3 非線形判別による結果

非線形判別でも、全組み合わせで計算を行った。こちらでは、線形判別と異なり、スパース項 λ や、RBF カーネル関数のパラメータlの設定を行う必要がある。そのため、パラメータを λ およびlを変えつつ計算 を行った。パラメータは、 $\lambda = 0.1, 1.0, 10$ 、カーネルパラメータはl = 0.1, 5.0, 10, 15, 20で計算した。これら で計算を行った結果、最も AUC が高いものは、 $\lambda = 0.1$ 、l = 20のもので、AUC = 0.6806 であった。次に AUC が高いものは、 $\lambda = 0.1$ 、l = 15のもので、AUC = 0.6780 であった。

このうち、(λ , l) = (0.1, 20) で判別を行った結果を図 4.8 に示す。こちらの結果では、 $A_{exp} \geq l_{RBF}$ は線形判別と同様に高頻度で使用されているが A_{RBF} もまた高頻度で使用されている。

Linear Discriminant Analysis

図 4.7: ガウス過程で得られたパラメータで線形判別を行った結果。AUC が高いものから順に 30 通りを示 している。黒く塗りつぶしてあるのが使用したパラメータである。

Sparse Logistic Regression

図 4.8: ガウス過程で得られたパラメータで非線形判別を行った結果。AUC が高いものから順に 30 通りを示している。黒く塗りつぶしてあるのが使用したパラメータである。

第5章 考察

5.1 結果の有意性について

本研究により、全パラメータの組み合わせで判別を行い、それぞれに対して AUC が得られた。結果、AUC が高いパラメータの組み合わせを得ることができた。この、得られた AUC 値が有意性を持つものであることを確かめるために、ランダムデータを用いた実験を行った。

この実験は、実データを用いて得られるガウス過程の6パラメータに、標準正規分布で発生させた乱数を 代入したものに対して判別を行ったものである。

このようにして作られた人工データは本来はサンプルの特徴に無関係であるため、それらを用いた判別モ デルでは低い AUC 値が期待される。一方、本来は無関係であっても偶然サンプルの分類に良い指標となる 可能性もある。そこで、そのようなランダムデータを用いて得られる AUC の分布と、実データの AUC の 分布を比較することで、実データによる判別の有意性を確認する。

この乱数による判別を10回行ったものと、実データによる判別の結果を図5.1に示す。

5.2 高い AUC の結果が得られたパラメータの組み合わせによる線形判別

4.2, 4.3 節より、線形判別の方がスパースロジスティック回帰による非線形判別よりも高い AUC 値が得られた。この原因については 5.7 節で考察するが、ここでは以降、AUC 値の高い線形判別の結果を中心に議論する。

図 4.7 から、AUC が高いもので使用されているパラメータの多くは、 A_{exp} , σ_{exp}^2 , l_{RBF} に集中していること がわかる。特に A_{exp} と l_{RBF} は非線形判別であるスパースロジスティック回帰の結果でも高い AUC 値を実現 する変数として選択されており、重要なパラメータであることがわかる。そのため、この 3 パラメータのみ を使用し、教師データとテストデータを同一にして、線形判別を行った。それによる分類の結果を表 5.1 に 示す。この表から、FSRQ 18 サンプルのうち、正しく判別されたものが 7 サンプル、誤判別されたものが 11 サンプルあることがわかる。

また、この3パラメータを使用した線形判別の結果を用いて、パラメータの散布図を作成した。これを、 図 5.2 と図 5.3 に示す。この図では、誤判別されたサンプルを緑色の枠で囲っている。この散布図から、 A_{exp} が線形判別のパラメータとして大きく寄与していることがわかる。FSRQ と BL Lac の境界は $A_{exp} \sim 0.38$ に存在し、この境界付近の数サンプルをよりよく分類するために他のパラメータ σ_{exp}^2 と l_{RBF} が補助的に使用 されている。

*A*_{exp} は式 2.13 からわかるように、指数カーネルの振幅にあたるパラメータである。指数カーネルを用いたガウス過程回帰では短時間の変動をよく表現できるため、*A*_{exp} は短時間変動の大きさや振幅を表していると考えられる。

図 5.1: パラメータの全組み合わせを試行して得られた AUC のヒストグラム。実データを用いた判別の結果 (上)と、ランダムデータを用いた判別の結果(下)。横軸は AUC、縦軸は判別の総試行回数に占める割合で ある。

		推定されたクラス		
		BL Lac	FSRQ	
エレンクラフ	BL Lac	42	2	
正しいクノス	FSRQ	11	7	

表 5.1: パラメータ A_{exp} , σ_{exp}^2 , l_{RBF} を用いて線形判別を行った結果。元々 BL Lac とされている天体のうち、 正しく分類されたものが 42 サンプルで、誤判別されたものが 2 サンプルある。FSRQ とされている天体の うち、正しく分類されたものが 7 サンプルで、誤判別されたものが 11 サンプルある。

32

図 5.2: A_{exp} と l_{RBF} の散布図。白丸が BL Lac 型、赤三角が FSRQ 型を示している。ガウス過程で得られた パラメータ A_{exp} , σ_{exp}^2 , l_{RBF} を用いて線形判別を行った結果、誤判別されたサンプルを緑枠で囲んでいる。

図 5.3: $A_{exp} \ge \sigma_{exp}^2$ の散布図。白丸が BL Lac 型、赤三角が FSRQ 型を示している。ガウス過程で得られた パラメータ $A_{exp}, \sigma_{exp}^2, l_{RBF}$ を用いて線形判別を行った結果、誤判別されたサンプルを緑枠で囲んでいる。

ー方で、*A*_{exp}のヒストグラム図 4.1 からも確認できるように、小さな *A*_{exp}を持つ FSRQ も多く存在し、 *A*_{exp}が大きいサンプルが FSRQ 型天体であるとの判断はできない。特に、サンプルの FSRQ 型天体のうち、 MisV1436, 3C 279, 3C 454.3 の 3 つの天体は、サンプル(観測時期)により分類先のクラスが異なる。また、 図 5.2 からも、 FSRQ と判別されたサンプルはいずれも比較的高い *A*_{exp}を持っていることがわかる。以上 のことから、FSRQ であっても大きな短時間フレアがない期間は、BL Lac と判別つかないことがわかる。

別の見方をすると、FSRQ型天体の光度曲線の特徴は「BL Lac 型天体に比べて振幅の大きい短時間フレアを起こす頻度が高い」と定義できる。

実際、BL Lac 43 サンプルのうち高い A_{exp} を持ち、FSRQ に誤判別されたサンプルは 2 つのみである。ただ、実際に FSRQ との比較を行うためには、シンクロトロン放射の極大周波数 (ν_{peak}) が同程度である LSP 天体のみで比較する必要がある。その場合でも、15 サンプルのうち FSRQ に誤判別されたサンプルは 2 サンプルのみである。この場合でも、やはり BL Lac は FSRQ に比べて振幅の大きな短時間フレアを起こす頻度が低いことを意味する。

この結論は、観測された最大-最小光度(等級)による「変動振幅」や、光度(等級)の分散を使った先行研究[4]と定性的には一致するが、そのような指標よりも正確に短時間変動の振幅の情報を抽出できていると考えられる。

5.3 FSRQ 型天体の Aexp が大きい理由

可視域では、FSRQ は高いエネルギーまで加速された電子からのシンクロトロン放射を見ていることになる。一方で BL Lac では低いエネルギーの電子からのシンクロトロン放射が見えている。

もし、ブレーザーのシンクロトロン放射が、図 5.4 のように、エネルギー的に小規模な加速現象ほど多 く発生し、大規模な加速現象ほど頻度が低いとすると、低いエネルギーの電子からの放射が見えている BL Lac では常に複数の放射源が存在し、逆に、最高エネルギーの電子からの放射が見えている FSRQ では同 時に存在する放射源が少ないことが期待される。BL Lac のように多くの放射源が同時に存在し、その合計 が観測される場合、ある放射源のフレアは他の放射源の寄与が大きいため、その振幅は小さくなる。逆に、 FSRQ のように同時に存在する放射源が少ない場合は、他の放射源の寄与が少ないため、フレアの振幅が大 きくなる。この仮説によって、FSRQ では *A*_{exp} が大きくなり得る一方で、 BL Lac では *A*_{exp} が小さい傾向 にあること、および、FSRQ でも *A*_{exp} が小さいサンプルがあることが説明できる。

ただし、LSP-BL Lac は FSRQ と同様に最高エネルギー電子からの放射が見えているはずだが、A_{exp} が 大きいサンプルは FSRQ と比較して少ない。これは、 FSRQ と BL Lac で電子のエネルギーの違い以外に、 ジェットの性質の違いが関わっているのかもしれない。

5.4 FSRQ 型天体 と判定される BL Lac 型天体について

BL Lac で、FSRQ に誤判定されたものの中で、*A*_{exp} が最大の値を持つのは LSP BL Lac である AO 0235+164 である (*A*_{exp} = 0.857。表 4.1、図 5.2、5.3 参照)。この天体は VLBI 電波画像で電波源が非常にコンパクトで あることや、ジェットの見込み角が 2.4 度以下と、ブレーザーの中でも小さい値であることが知られている [15]。ジェットの見込み角が小さいと、同じジェットでもドップラー因子が大きくなる。実際、この天体では ドップラー因子が 80 以上という、非常に高い値も報告されている [16]。 ドップラー因子が大きいと、より

図 5.4: 活動銀河核で起こる幅広いエネルギー帯域での放射の原因を示している図 [18]。円の中の番号が大きいほど、高いエネルギー放射を行うことができるものである。しかし、エネルギーが高いほどその放射を 行うものは少ないことを示している。例えば、青色の5番は他の番号に比べて最も大きなエネルギー放射 を行うことができるが、その数は少ない。

強いビーミング効果が働き、変動振幅が大きくなることが期待される。このことは AO 0235+164 が FSRQ に誤判定された原因として考えられる。

一方、大きなドップラー因子はタイムスケールをより短くする効果もある。もし、光度曲線の特徴がジェットの見込み角に大きく依存しているならば、変動のタイムスケールに対応する *l*_{exp} や *l*_{RBF} が図 4.7 で分類に 有効な特徴量として選択されているはずである。しかし、今回の結果では *l*_{exp} は選択されていない。*l*_{RBF} は 選択されているが、AO 0235+164 の *l*_{RBF} の値は小さくなく、むしろ大きな値 (*l*_{RBF} = 39.502) である。これ は変動のタイムスケールが長いことを示唆しており、ジェットの見込み角が小さいことと矛盾する。ジェッ トの見込み角は観測される変動のタイムスケールに影響することは理論上疑いないが、実際には天体ごと の変動タイムスケールのばらつきの方が大きく、天体固有のタイムスケールが目立ち、それによりジェット の見込み角の影響は目立たないのかもしれない。

5.5 パラメータ *l*_{RBF} について

RBF カーネルのタイムスケールである l_{RBF} は有効な変数として選択されたが、図 4.5 や図 5.2 からわかる ように、多くのサンプルは $l_{RBF} \lesssim 40$ に集中しており、いくつかの BL Lac 天体が非常に大きな l_{RBF} を持っている。

 l_{RBF} が最大となった天体は BL Lac である。特に、このサンプルは図 5.5 のように、1 年間を通して単調 な増光が観測されており、その傾向が RBF カーネルで抽出されている。また、 l_{RBF} が高い上位 3 つのうち、 他の 2 つも BL Lac 型であり、いずれも長めの変光が観測されている。これらのことから、大きな l_{RBF} は、 BL Lac 型の特徴を示す指標となり得ると考えることができる。このように、RBF カーネルのパラメータ *l*_{RBF}は、指数カーネルとは対照的に、長期的な光度変動の傾向を表していると考えることができ、*l*_{RBF}はその変動タイムスケールを表している。

しかし、 l_{RBF} - A_{exp} の散布図 5.2 からもわかるように、判別に重要な変数は A_{exp} であり、 l_{RBF} はわずかに判別性能を改善する役割しか果たせていない。そのため、本研究からは大きな l_{RBF} が BL Lac 型の特徴だと結論付けることはできない。

図 5.5: 本研究で最も高い I_{RBF} が得られたサンプル。緑線は、このガウス過程で使用したサンプルの範囲を、 赤点は観測で得られたデータ点を、青線はガウス過程の結果の平均値を示している。

5.6 特異な天体について

5.6.1 PKS 1749+096

PKS 1749+096 は、FSRQ の特徴である可視域での強い輝線が観測されている [2] が、SED や電波ジェットの輝度分布などからは BL Lac 型に典型的で [17]、両方の型の特徴を持った中間的な天体の可能性がある。 本研究では光度曲線の特徴からは FSRQ と判別されている。

5.6.2 S5 0716+714

S5 0716+714 は、6 サンプル全てが BL Lac と正しく判別されているが、多くのサンプルで A_{exp} の値は 0.3 程度と、比較的高い。図 5.2 において、 $A_{exp} = 0.3$ -0.4 の範囲にある BL Lac サンプルが S5 0716+714 である。したがって、S5 0716+714 を除けば、 A_{exp} での決定境界を $A_{exp} = 0.2$ 付近にすることによって、FSRQ の正答率を上げることができる。言い換えれば、S5 0716+714 が BL Lac 型として特異な天体とも言え、特

異な光度変動の原因を探ることでジェットの統一的な理解の手がかりが得られるかもしれない。BL Lac も 同様に、大きな A_{exp} を示すサンプルがあることにも注意が必要である。

5.7 線形判別の方が非線形判別よりも高い性能が得られた理由

今回の結果では、線形判別の方が非線形判別に比べて高いAUC値が得られた。本来、非線形判別のほうが、線形判別に比べて決定境界に対する自由度が高いため、判別器の性能は高くなるはずである。これが逆の結果となってしまった原因の考察を行う。

これらのパラメータを変更しつつ得られた結果は、高々AUC0.68 程度で、比較的高かったものでは、 $(\lambda, l) = (0.1, 10)$ のAUC= 0.677、(0.1, 15)のAUC= 0.678、(0.1, 20)のAUC= 0.68、(0.1, 10)のAUC= 0.675、であった。また、パラメータの捜索は $\lambda = 0.1, 1.0, 10, l = 0.1, 5.0, 10, 15, 30$ の範囲内で行った。そのため、l < 0.1や、0.1 < l < 5.0の値を用いて判別を行っておらず、パラメータの調整が不十分であるため、線形判別に劣る結果となったと考えられる。

これら判別モデルのパラメータ調整をより高精度に行えば線形判別と同等かそれ以上の AUC 値が期待で きるはずであり、今後、そのような解析をする必要がある。

第6章 まとめ

本研究では、BL Lac と FSRQ の光度曲線に対し、RBF カーネルと指数カーネルを使用したガウス過程回 帰を行い、変動の特徴を表すパラメータを取得し、それぞれの分類の比較を行った。パラメータの比較に は、線形判別と非線形判別の両方を使用し、それぞれに特徴的なパラメータを探すために、使用するパラ メータの全組み合わせで判別を行った。

その結果、指数カーネルを使用したガウス過程回帰の振幅パラメータ *A*_{exp} が特に BL Lac と FSRQ の特 徴を表していた。BL Lac は大きな短時間フレアの頻度が小さく、FSRQ は頻度が大きいというものである。 この結果は、AGN の内部に複数の放射源が存在することが見かけ上のフレアに関わっていることを示唆す るものである。また、FSRQ と同波長帯の LSP-BL Lac を比較した結果、*A*_{exp} の分布に差異が見られた。こ のため、 BL Lac と FSRQ でジェットの性質に違いがある可能性も考えられる。

また、非線形判別を行った結果、線形判別よりも性能が劣る結果となった。これは、本研究で使用した非 線形判別は線形判別と異なり、設定するパラメータの自由度があるため、パラメータ調整が不十分であった と考えられる。そのため、調整を行うことにより線形判別以上の性能が期待される。

付録A RBFカーネルによるガウス過程回帰の計 算結果

RBF カーネルを用いた、ガウス過程回帰による計算結果を以下に示す。サンプルの境界が図中に存在する場合、縦線で示してある。

付 録 B 指数カーネルによるガウス過程回帰の計 算結果

同様に、指数カーネルを用いた、ガウス過程回帰による計算結果を以下に示す。

謝辞

何より、同期の河原くんには感謝してもしてきれません。大学院生活で頑張ろうと思えたのも頑張ってこれたのも河原くんのおかげです。本当にありがとうございます。

また、指導教官である植村先生には研究内容や論文作成に際して大変お世話になりました。ここにお礼申 し上げます。

参考文献

- [1] Blandford & Konigl, 1979, ApJ, 232, 34
- [2] Ghisellini, et al. 2011, MNRAS, 414, 2674
- [3] Abdo, et al. 2009b, arXiv:0912.2040
- [4] Ikejiri, et al., 2011, PASJ, 63, 639
- [5] Sobolewska, et al. 2014, ApJ, 786, 14
- [6] MacLeod, et al. 2010, ApJ, 721, 1014
- [7] Kelly, et al. 2011, ApJ, 730, 52
- [8] C.M. ビショップ, 2012, 『パターン認識と機械学習』(元田 浩・栗田多喜夫・樋口知之・松本裕治・村田 昇 監訳), 丸善出版
- [9] Krishnapuram, Carin, Figueiredo, and Hartemink, 2005, Pattern Analysis and Machine Intelligence, IEEE Tran. 27, 957
- [10] Itoh, et al., 2016, ApJ, 833, 77
- [11] Emmanoulopoulos, et al. 2010, MNRAS, 404, 931
- [12] Ackermann, Ajello, Atwood, et al. 2015b, ApJ, 810, 14
- [13] Abdo, et al. 2011, ApJ, 736, 131
- [14] Ackermann, Ajello, Allafort, et al. 2011, ApJ, 743, 171
- [15] Agudo et al. 2011, ApJL, 735, 10
- [16] Fujisawa, et al. 1999, PASJ, 51, 537
- [17] Lu et al. 2012, A&A, 544, A89
- [18] Marscher, & Jorstad, 2010, arXiv:1005.5551