Aims. We aim to study the interstellar medium (ISM) and cosmic-rays (CRs) in local HI clouds in the 3rd Galactic quadrant.

Methods. We evaluated the total gas column density $N(H_{tot})$ by investigating the correlations among 21 cm survey data (HI4PI), Planck dust models (optical depth at 353 GHz τ_{353} and radiance R), and Fermi-LAT γ-ray data.

Results & Prospects. We found $N(H_{tot,\gamma})/\tau_{353}$ and $N(H_{tot,\gamma})/R$ depend on dust temperature T_d in the North region, and $N(H_{tot,\gamma})/\tau_{353}$ is not constant over τ_{353} in the South region. We will examine the systematic uncertainties and discuss ISM and CRs properties.
Objective of the Study

- An accurate estimate of $N(H_{\text{tot}})$ is crucial to understand the ISM and CRs.
- Considerable amount of ISM gas is not properly traced by HI and CO line surveys [1]. The distribution of this “dark gas” can be estimated by dust data, but the procedure has not been established yet.
- We studied mid-latitude region of the 3rd quadrant using Fermi-LAT γ-ray data (as a robust tracer of $N(H_{\text{tot}})$), HI4PI data [2], and Planck dust models [3], in order to examine the following ISM properties and implications on CRs:
 - (a) T_d dependence of dust-emission to gas ratio [4]
 - (b) Non-linearity of dust-emission to gas ratio [5][6]
W_{HI}-Dust Relations

- North: T_d dependence is seen and is larger in the W_{HI}-τ_{353} relation
- South: T_d dependence is weak, but a non-linear relation is observed
- We used linear relations which follow trends in high T_d & low W_{HI} area to construct initial $N(H_{\text{tot}})$ template maps from τ_{353} and R
Results and Prospects

- We fit γ-ray data with a linear combination of gas template maps and other components (isotropic, inverse Compton, sources etc.)
- Under the assumption of a uniform CR density, emissivity should not depend on T_d (North) and should be constant over τ_{353} (South), if $N(H_{tot}) \propto \tau_{353}$ or R
- North: We prepared T_d-sorted maps and found a positive T_d dependence for τ_{353}, likely due to an overestimate of $N(H_{tot})/\tau_{353}$ in low T_d area (similar trend seen in [4])
- South: We prepared τ_{353}-sorted maps and found negative τ_{353} dependence, likely due to an overestimate of $N(H_{tot})/\tau_{353}$ in high τ_{353} area (similar trend seen in [5][6])
- Future plan: examine the systematic uncertainties and discuss ISM and CR properties

Scale factors to the model for the local interstellar spectrum [7]

References: