Galactic Cosmic-Rays Observed by Fermi-LAT

Tsunefumi Mizuno
Hiroshima Univ.
on behalf of the Fermi-LAT Collaboration

JPS 2009 Autumn Meeting
September 11, 2009, Kobe, Japan
Plan of the Talk

1. Cosmic-ray overview and Fermi Gamma-ray Space Telescope
2. Cosmic-ray electrons seen by Fermi-LAT (direct measurement of CRs)
3. Galactic CRs revealed by diffuse γ-ray emission observed by Fermi-LAT (CRs in distant location)
Introduction: Cosmic-Rays and the Fermi Gamma-ray Space Telescope
Cosmic-Rays Overview

- Discovered by V. Hess in 1912
- Globally power-law spectrum with some structures (knee and ankle)
 - hint of the origin
 - $E < E_{\text{knee}}$ are (probably) Galactic origin
- Composition:
 - $e^- \sim (1/100 - 1/1000) \times p, e^+ \sim (1/10) \times e^-$
- Large energy density: $\sim 1 \text{ eV cm}^{-3}$
 - comparable to U_B and U_{rad}
- Studied by direct and indirect measurements

![Graph showing the spectrum of cosmic rays with labels for Galactic and Extragalactic regions, as well as knee and ankle energies.](image)
Introduction (1):
What Can We Learn from HE e⁻/e⁺ (and p/\bar{p})?

- Inclusive spectra: e⁻ + e⁺
 - Electrons, unlike protons, lose energy rapidly by Synchrotron and Inverse Compton: at very high energy they probe the nearby sources

- Charge composition: e⁺/(e⁻ + e⁺) and \bar{p}/(\bar{p} + p) ratios
 - e⁺ and \bar{p} are produced by the interactions of high-energy cosmic rays with the interstellar matter (secondary production)
 - There might be signals from additional (astrophysical or exotic) sources

- Different measurements provide complementary information of the origin, acceleration and propagation of cosmic rays
 - All available data must be interpreted in a coherent scenario

Study nearby sources (astrophysical or exotic)
HE γ-rays are produced via interactions between Galactic cosmic-rays (CRs) and the interstellar medium (or interstellar radiation field)

A powerful probe to study CRs in distant locations

Tsunefumi Mizuno
Fermi Launch

- Launched from Cape Canaveral Air Station on June 11, 2008
- Science Operation on Aug 4, 2009
- Orbit: 565 km, 26.5° (low BG)
Fermi Gamma-ray Space Telescope

Two instruments:
- Large Area Telescope (LAT)
 20 MeV - >300 GeV
- Gamma-ray Burst Monitor (GBM)
 8 keV - 40 MeV

Fermi-LAT consists of three subsystems
- **ACD**: segmented plastic scintillators
 - BG rejection
- **Tracker**: Si-strip detectors & W converters
 - ~1.5 R.L. (vertical)
 - Identification and direction measurement of γ-rays
- **Calorimeter**: hodoscopic CsI scintillators
 - ~8.5 R.L. (vertical)
 - Energy measurement
 - Also serves as an Imaging Calorimeter

Ideal for the direct and indirect (through γ-ray obs.) measurement of CRs
Fermi-LAT Results (1): Direct Measurements of Galactic CR Electrons
Quick Review of Positron and Antiproton Fraction: 2008-09

PAMELA positron and antiproton
Nature 458, 607 (2009)
PRL 102, 051101 (2009)

- Antiproton fraction consistent with secondary production
- Anomalous rise in the positron fraction above 10 GeV
- Several different viable interpretations (>200 papers over the last year)

See also Nature 456, 362 (2008) and PRL 101, 261104 (2008) for pre-Fermi CRE spectrum by ATIC and HESS.
Fermi-LAT Capability for CR Electrons

- Candidate electrons pass through 12.5 X_0 on average (Tracker and Calorimeter added together)

- Simulated residual hadron contamination (5-21% increasing with the energy) is deducted from resulting flux of electron candidates

- Effective geometric factor (G_f) exceeds $2.5 \text{ [m}^2 \text{sr]}$ for 30 GeV to 200 GeV, and decreases to $\sim1 \text{ [m}^2 \text{sr]}$ at 1 TeV. G_f times live time has already reached several $\times 10^7 \text{ [m}^2 \text{sr s]}$. (very high statistics)

- Full power of all LAT subsystems is in use: Tracker, Calorimeter and ACD act together
FOM for CRE Measurement

Exposure factor (effectively) determines the # of counts

\[E_f(E) = G_f(E) \times T_{\text{obs}} \]

- The exposure factor determines the statistics
- Imaging calorimeters (vs. spectrometers) feature larger Gf
- Space (vs. balloon) experiments feature longer T_{\text{obs}}
Fermi-LAT Electron Spectrum

- statistics for 6 month data
 - >4 million electrons above 20 GeV
 - >400 electrons in the last energy bin
- Harder spectrum (spectral index: -3.04) than previously thought

- Pre-Fermi reference model (GALPROP conventional model):
 - conventional source distribution (uniformly distributed distant sources)
 - source PL index: $\gamma_0 = 2.54$
 - diffusion coefficient index: $\delta = 0.33$
Implication from Fermi-LAT CRE (1)

- Fermi CRE spectrum can be reproduced by the “conventional” model with harder injection spectral index (-2.42) than in a pre-Fermi conventional model (-2.54), within our current uncertainties both statistical and systematic.

- for detail, see D. Grasso et al. arXiv:0905.0636 (accepted by Astroparticle Physics)

- New “conventional” model
 - $\gamma_0=2.42$ ($\delta=0.33$, w/ reacceleration)
 - $\gamma_0=2.33$ ($\delta=0.6$, plain diffusion)
Implication from Fermi-LAT CRE (2)

• Now include recent PAMELA result on positron fraction

\[\frac{e^+}{(e^- + e^+)} \sim E^{(-\gamma_p + \gamma_0)}, \quad \gamma_p \sim 2.7 \] (proton spectral index)

• If the secondary positrons only

 \[\frac{e^+}{(e^- + e^+)} \sim E^{(-\gamma_p + \gamma_0)}, \quad \gamma_p \sim 2.7 \] (proton spectral index)

 The hard e^+ + e^- spectrum found by Fermi-LAT sharpens the anomaly
Implication from Fermi-LAT CRE (3)

• It is becoming clear that we are dealing with at least 3 distinct origins of HE e⁻/e⁺
 ➢ Uniformly distributed distant sources, likely SNRs.
 ➢ Unavoidable e⁺e⁻ production by CRs and the ISM “conventional” sources
 ➢ And those that create positron excess at high energies. Nearby (d<1 kpc) and Mature (10⁴ - 10⁶ yr) pulsars? DM?

• Energy source: rotation energy of the NS
• Electron and positrons are re-accelerated at the pulsar wind/shock with a power law spectrum with index Γ~1.5
• e⁻/e⁺ are expected to be confined until T~10-100 kyr after the birth of pulsar. Only mature (10<T<1000 kyr) pulsars are expected to be relevant
• $E_{\text{cut}} \sim 10^3$ TeV for young PWN. It is expected to decrease with the pulsar age ($E_{\text{cut}} \sim 0.1-10$ TeV for mature pulsars)

• Fermi data requires an e⁻/e⁺ injection spectrum significantly harder than generally expected for shell-type SNRs
Pulsar Scenario

- An example of the fit to both Fermi and PAMELA data with Monogem and Geminga with a nominal choice for the e+/e- injection parameter (blue lines).

This particular model assumes:
- 40% e-/e+ conversion efficiency
- $\Gamma=1.7$
- $E_{\text{cut}}=1$ TeV
- Delay=60 kyr

(Discrepancy in positron fraction at low energies can be understood as the charge-sign effect of solar modulation)
Like for the case of pulsars, PAMELA and Fermi data tighten the DM constraints

Lepto-philic preferred

Both in the pure e^+e^- and lepto-philic models, a DM interpretation is possible with boost factors of 20-100
Summary of Fermi-LAT CRE

- Real breakthrough during last 1-1.5 years in CR electrons: ATIC, HESS, PAMELA and finally Fermi-LAT
- Fermi-LAT provides precise measurements of CR e⁻/e⁺ spectrum in 20 GeV-1 TeV
- With the new data more puzzles than was before. Fermi-LAT’s hard e⁻/e⁺ spectrum contradicts with PAMELA’s positron fraction.
- We may be coming close to the first detection of cosmic-ray sources
- Source nature (astrophysical or exotic) is still unclear but strongly constrained by data of Fermi-LAT (+ others)
- More results from Fermi-LAT are coming. Extending energy range to 5 GeV – 2 TeV and searching for the CRE anisotropy at a level of ~1%.
Fermi-LAT Result (2): Galactic Diffuse Gamma-ray Emission (Indirect Probe of Galactic CRs)
Outstanding Question: EGRET GeV Excess

- We can “measure” the CR spectrum in distant locations by observing diffuse γ-rays.

- EGRET observations showed excess emission > 1 GeV everywhere in the sky when compared with models based on directly measured CR spectra
 - Potential explanations
 - Unexpectedly large variations in cosmic-ray spectra over Galaxy
 - Dark Matter
 - Unresolved sources (pulsars, SNRs, …)
 - Instrumental

- Fermi-LAT is able to confirm or reject this phenomenon

$\sim 100\%$ difference above 1 GeV

Hunter et al. 1997
Intermediate Latitude Region seen by LAT

- $|b|=10°-20°$: avoid Gal. plane but still have high statistics
- EGRET spectrum extracted for the same region

- LAT spectrum is significantly softer and does not confirm the EGRET GeV excess
- Strongly constrains the DM interpretation
Probing CRs using Gamma-rays from ISM

- Correlation with gas column density reveals the CR spectrum
 - Method goes back to SAS-2/COS-B era
- Fermi-LAT’s high performance + CR propagation model (e.g. GALPROP) to predict IC
 - Sensitivity significantly improved

Gamma-ray intensity
(Fermi LAT data)

ISM
(e.g., LAB HI survey)
(http://www.astro.uni-bonn.de/~webalub/english/tools_labsurvey.php)

Mid/high latitude region:
- Detailed study of local CRs (most of the gas is close to the solar system)

Galactic plane:
- CR gradient in the Galaxy (need to resolve point sources)
Accurate Measurements of Local CRs (1)

Mid-high lat. region in 3rd quadrant:
 • small contamination of IC and molecular gas
 • correlate γ-ray intensity and HI gas column density

Accurate Measurement of Local CRs (2)

- Best quality γ-ray emissivity spectrum (per H-atom) in 100 MeV-10 GeV ($T_p = 1$-100 GeV)
- Agree with the model prediction from the local interstellar spectrum (LIS)

- Prove that local CR nuclei spectra are close to those directly measured at the Earth
- $E_\gamma < 100$ MeV constrain the e^- spectrum
CR Distribution in Galaxy

- CR distribution is a key to understand their origin and propagation.
- Distribution of SNRs not well measured.
- Previous Gamma-ray data suggests a flatter distribution than SNR/pulsar distributions (e.g., Strong et al. 2004)

- Fermi-LAT is able to map out CR distributions in the Galaxy with unprecedented accuracy.
- Large scale analysis in progress. (arXiv:0907.0304)

- Preliminary analysis of the 3rd quadrant (outer Galaxy) will be discussed. See also the relevant study of the 2nd quadrant (arXiv:0907.0312)
Fermi-LAT View of the 3rd Quadrant

- One of the best studied regions in γ-rays
 - Vela, Geminga, Crab and Orion A/B
- Galactic plane between Vela and Geminga (green square) is ideal to study diffuse γ-rays and CRs.
 - small point source contamination, kinematically well-separated arms (local arm and Perseus arm)
Construction of the Model

• Fit γ-ray data with 8 maps + 15 point sources (11 month source list)
• CR spectrum (γ-ray emissivity) is assumed to be uniform in each Galactocentric ring

- Local arm
 + 1 CO map + excess E(B-V) map (Grenier et al. 2005)
 + IC map (galprop model) + point sources (11 month list)

- Perseus arm
 +2 HI maps (profile fitting technique; arXiv:0907.0312)

Utilize new techniques, understanding of the ISM and power of the LAT.
HI Emissivity (CR) Spectra

HI Emissivity Spectrum of each ring

- Emissivity (CR) spectrum of local arm (R=8.5-10 kpc) is slightly smaller than that of LIS
- Decreasing emissivity (local arm => interarm => Perseus arm) are consistent with decreasing CR density across the Galaxy
- Similar CR spectral shape up to R=16 kpc

Point sources with Ts>=100 are included in the fitting
• Emissivity gradient traces the CR density. Robust against the thresholds for point sources included.
• Significantly flatter than the SNR distributions
 ➢ may indicate more CR sources than previously thought in the outer Galaxy, large halo size, etc.
• Comparison with the model prediction is in progress.
Summary

• Fermi-LAT is a powerful instrument to measure CRs either directly or indirectly

• Fermi-LAT provides largest statistics of high-energy CR e^-/e^+ spectrum.
 - Precise and hard CR electron spectrum by Fermi-LAT and PAMELA positron fraction require local sources (astrophysical or exotic)
 - Source nature is still unclear but strongly constrained.

• CRs in distant locations can be “observed” by diffuse γ-rays.
 - EGRET GeV-excess not confirmed.
 - Fermi proves that local CR nuclei spectra are close to those of LIS.
 - Flat and large CR density in the outer Galaxy is indicated.

Thank you for your attention!